
Telegram Open Network

Dr. Nikolai Durov

December 3, 2017

Abstract

The aim of this text is to provide a first description of the Tele-
gram Open Network (TON) and related blockchain, peer-to-peer, dis-
tributed storage and service hosting technologies. To reduce the size
of this document to reasonable proportions, we focus mainly on the
unique and defining features of the TON platform that are important
for it to achieve its stated goals.

Introduction
The Telegram Open Network (TON) is a fast, secure and scalable blockchain
and network project, capable of handling millions of transactions per second
if necessary, and both user-friendly and service provider-friendly. We aim
for it to be able to host all reasonable applications currently proposed and
conceived. One might think about TON as a huge distributed supercom-
puter, or rather a huge “superserver”, intended to host and provide a variety
of services.

This text is not intended to be the ultimate reference with respect to
all implementation details. Some particulars are likely to change during the
development and testing phases.

1

Introduction

Contents
1 Brief Description of TON Components 3

2 TON Blockchain 5
2.1 TON Blockchain as a Collection of 2-Blockchains 5
2.2 Generalities on Blockchains 15
2.3 Blockchain State, Accounts and Hashmaps 19
2.4 Messages Between Shardchains 29
2.5 Global Shardchain State. “Bag of Cells” Philosophy. 38
2.6 Creating and Validating New Blocks 44
2.7 Splitting and Merging Shardchains 57
2.8 Classification of Blockchain Projects 61
2.9 Comparison to Other Blockchain Projects 74

3 TON Networking 81
3.1 Abstract Datagram Network Layer 81
3.2 TON DHT: Kademlia-like Distributed Hash Table 85
3.3 Overlay Networks and Multicasting Messages 91

4 TON Services and Applications 99
4.1 TON Service Implementation Strategies 99
4.2 Connecting Users and Service Providers 103
4.3 Accessing TON Services . 105

5 TON Payments 113
5.1 Payment Channels . 113
5.2 Payment Channel Network, or “Lightning Network” 120

Conclusion 124

A The TON Coin, or the Gram 127

2

Chapter 1. Brief Description of TON Components

1 Brief Description of TON Components
The Telegram Open Network (TON) is a combination of the following com-
ponents:

• A flexible multi-blockchain platform (TON Blockchain; cf. Chapter 2),
capable of processing millions of transactions per second, with Turing-
complete smart contracts, upgradable formal blockchain specifications,
multi-cryptocurrency value transfer, support for micropayment chan-
nels and off-chain payment networks. TON Blockchain presents some
new and unique features, such as the “self-healing” vertical blockchain
mechanism (cf. 2.1.17) and Instant Hypercube Routing (cf. 2.4.20),
which enable it to be fast, reliable, scalable and self-consistent at the
same time.

• A peer-to-peer network (TON P2P Network, or just TON Network; cf.
Chapter 3), used for accessing the TON Blockchain, sending transac-
tion candidates, and receiving updates about only those parts of the
blockchain a client is interested in (e.g., those related to the client’s
accounts and smart contracts), but also able to support arbitrary dis-
tributed services, blockchain-related or not.

• A distributed file storage technology (TON Storage; cf. 4.1.8), acces-
sible through TON Network, used by the TON Blockchain to store
archive copies of blocks and status data (snapshots), but also avail-
able for storing arbitrary files for users or other services running on the
platform, with torrent-like access technology.

• A network proxy/anonymizer layer (TON Proxy; cf. 4.1.11 and 3.1.6),
similar to the I2P (Invisible Internet Project), used to hide the iden-
tity and IP addresses of TON Network nodes if necessary (e.g., nodes
committing transactions from accounts with large amounts of cryp-
tocurrency, or high-stake blockchain validator nodes who wish to hide
their exact IP address and geographical location as a measure against
DDoS attacks).

• A Kademlia-like distributed hash table (TON DHT; cf. 3.2), used as
a “torrent tracker” for TON Storage (cf. 3.2.10), as an “input tunnel
locator” for TON Proxy (cf. 3.2.14), and as a service locator for TON
Services (cf. 3.2.12).

3

Chapter 1. Brief Description of TON Components

• A platform for arbitrary services (TON Services; cf. Chapter 4), re-
siding in and available through TON Network and TON Proxy, with
formalized interfaces (cf. 4.3.14) enabling browser-like or smartphone
application interaction. These formal interfaces and persistent service
entry points can be published in the TON Blockchain (cf. 4.3.17); ac-
tual nodes providing service at any given moment can be looked up
through the TON DHT starting from information published in the
TON Blockchain (cf. 3.2.12). Services may create smart contracts in
the TON Blockchain to offer some guarantees to their clients (cf. 4.1.7).

• TON DNS (cf. 4.3.1), a service for assigning human-readable names
to accounts, smart contracts, services and network nodes.

• TON Payments (cf. Chapter 5), a platform for micropayments, micro-
payment channels and a micropayment channel network. It can be used
for fast off-chain value transfers, and for paying for services powered
by TON Services.

• TON will allow easy integration with third-party messaging and so-
cial networking applications, thus making blockchain technologies and
distributed services finally available and accessible to ordinary users
(cf. 4.3.24), rather than just to a handful of early cryptocurrency
adopters. We will provide an example of such an integration in an-
other of our projects, the Telegram Messenger (cf. 4.3.19).

While the TON Blockchain is the core of the TON project, and the
other components might be considered as playing a supportive role for the
blockchain, they turn out to have useful and interesting functionality by
themselves. Using them, applications on the platform can become much
more versatile than if they relied on the TON Blockchain alone (cf. 2.9.13
and 4.1).

4

2.1. TON Blockchain as a Collection of 2-Blockchains

2 TON Blockchain
We start with a description of the Telegram Open Network (TON) Blockchain,
the core component of the project. Our approach here is “top-down”: we give
a general description of the whole first, and then provide more detail on each
component.

For simplicity, we speak here about the TON Blockchain, even though
in principle several instances of this blockchain protocol may be running
independently (for example, as a result of hard forks). We consider only one
of them.

2.1 TON Blockchain as a Collection of 2-Blockchains

The TON Blockchain is actually a collection of blockchains (even a collection
of blockchains of blockchains, or 2-blockchains—this point will be clarified
later in 2.1.17), because no single blockchain project is capable of achieving
our goal of processing millions of transactions per second, as opposed to the
now-standard dozens of transactions per second.

2.1.1. List of blockchain types. The blockchains in this collection are:

• The unique master blockchain, or masterchain for short, containing
general information about the protocol and the current values of its
parameters, the set of validators and their stakes, the set of currently
active workchains and their “shards”, and, most importantly, the set of
hashes of the most recent blocks of all workchains and shardchains.

• Several (up to 232) working blockchains, or workchains for short, which
are actually the “workhorses”, containing the value-transfer and smart-
contract transactions. Different workchains may have different “rules”,
meaning different formats of account addresses, different formats of
transactions, different virtual machines (VMs) for smart contracts, dif-
ferent basic cryptocurrencies and so on. However, they all must satisfy
certain basic interoperability criteria to make interaction between dif-
ferent workchains possible and relatively simple. In this respect, the
TON Blockchain is heterogeneous (cf. 2.8.8), similarly to the EOS
(cf. 2.9.7) and PolkaDot (cf. 2.9.8) projects.

• Each workchain is in turn subdivided into up to 260 shard blockchains,
or shardchains for short, having the same rules and block format as

5

2.1. TON Blockchain as a Collection of 2-Blockchains

the workchain itself, but responsible only for a subset of accounts, de-
pending on several first (most significant) bits of the account address.
In other words, a form of sharding is built into the system (cf. 2.8.12).
Because all these shardchains share a common block format and rules,
the TON Blockchain is homogeneous in this respect (cf. 2.8.8), simi-
larly to what has been discussed in one of Ethereum scaling proposals.1

• Each block in a shardchain (and in the masterchain) is actually not just
a block, but a small blockchain. Normally, this “block blockchain” or
“vertical blockchain” consists of exactly one block, and then we might
think this is just the corresponding block of the shardchain (also called
“horizontal blockchain” in this situation). However, if it becomes nec-
essary to fix incorrect shardchain blocks, a new block is committed into
the “vertical blockchain”, containing either the replacement for the in-
valid “horizontal blockchain” block, or a “block difference”, containing
only a description of those parts of the previous version of this block
that need to be changed. This is a TON-specific mechanism to replace
detected invalid blocks without making a true fork of all shardchains
involved; it will be explained in more detail in 2.1.17. For now, we
just remark that each shardchain (and the masterchain) is not a con-
ventional blockchain, but a blockchain of blockchains, or 2D-blockchain,
or just a 2-blockchain.

2.1.2. Infinite Sharding Paradigm. Almost all blockchain sharding pro-
posals are “top-down”: one first imagines a single blockchain, and then dis-
cusses how to split it into several interacting shardchains to improve perfor-
mance and achieve scalability.

The TON approach to sharding is “bottom-up”, explained as follows.
Imagine that sharding has been taken to its extreme, so that exactly one

account or smart contract remains in each shardchain. Then we have a huge
number of “account-chains”, each describing the state and state transitions
of only one account, and sending value-bearing messages to each other to
transfer value and information.

Of course, it is impractical to have hundreds of millions of blockchains,
with updates (i.e., new blocks) usually appearing quite rarely in each of
them. In order to implement them more efficiently, we group these “account-
chains” into “shardchains”, so that each block of the shardchain is essentially a

1https://github.com/ethereum/wiki/wiki/Sharding-FAQ

6

https://github.com/ethereum/wiki/wiki/Sharding-FAQ

2.1. TON Blockchain as a Collection of 2-Blockchains

collection of blocks of account-chains that have been assigned to this shard.
Thus the “account-chains” have only a purely virtual or logical existence
inside the “shardchains”.

We call this perspective the Infinite Sharding Paradigm. It explains many
of the design decisions for the TON Blockchain.

2.1.3. Messages. Instant Hypercube Routing. The Infinite Sharding
Paradigm instructs us to regard each account (or smart contract) as if it
were in its own shardchain by itself. Then the only way one account might
affect the state of another is by sending a message to it (this is a special
instance of the so-called Actor model, with accounts as Actors; cf. 2.4.2).
Therefore, a system of messages between accounts (and shardchains, because
the source and destination accounts are, generally speaking, located in dif-
ferent shardchains) is of paramount importance to a scalable system such as
the TON Blockchain. In fact, a novel feature of the TON Blockchain, called
Instant Hypercube Routing (cf. 2.4.20), enables it to deliver and process a
message created in a block of one shardchain into the very next block of the
destination shardchain, regardless of the total number of shardchains in the
system.

2.1.4. Quantity of masterchains, workchains and shardchains. A
TON Blockchain contains exactly one masterchain. However, the system
can potentially accommodate up to 232 workchains, each subdivided into up
to 260 shardchains.

2.1.5. Workchains can be virtual blockchains, not true blockchains.
Because a workchain is usually subdivided into shardchains, the existence of
the workchain is “virtual”, meaning that it is not a true blockchain in the
sense of the general definition provided in 2.2.1 below, but just a collection
of shardchains. When only one shardchain corresponds to a workchain, this
unique shardchain may be identified with the workchain, which in this case
becomes a “true” blockchain, at least for some time, thus gaining a superfi-
cial similarity to customary single-blockchain design. However, the Infinite
Sharding Paradigm (cf. 2.1.2) tells us that this similarity is indeed superfi-
cial: it is just a coincidence that the potentially huge number of “account-
chains” can temporarily be grouped into one blockchain.

2.1.6. Identification of workchains. Each workchain is identified by its
number or workchain identifier (workchain_id : uint32), which is simply an

7

2.1. TON Blockchain as a Collection of 2-Blockchains

unsigned 32-bit integer. Workchains are created by special transactions in
the masterchain, defining the (previously unused) workchain identifier and
the formal description of the workchain, sufficient at least for the interaction
of this workchain with other workchains and for superficial verification of this
workchain’s blocks.

2.1.7. Creation and activation of new workchains. The creation of a
new workchain may be initiated by essentially any member of the community,
ready to pay the (high) masterchain transaction fees required to publish the
formal specification of a new workchain. However, in order for the new
workchain to become active, a two-thirds consensus of validators is required,
because they will need to upgrade their software to process blocks of the new
workchain, and signal their readiness to work with the new workchain by
special masterchain transactions. The party interested in the activation of
the new workchain might provide some incentive for the validators to support
the new workchain by means of some rewards distributed by a smart contract.

2.1.8. Identification of shardchains. Each shardchain is identified by a
couple (w, s) = (workchain_id , shard_prefix), where workchain_id : uint32

identifies the corresponding workchain, and shard_prefix : 20...60 is a bit
string of length at most 60, defining the subset of accounts for which this
shardchain is responsible. Namely, all accounts with account_id starting
with shard_prefix (i.e., having shard_prefix as most significant bits) will be
assigned to this shardchain.

2.1.9. Identification of account-chains. Recall that account-chains have
only a virtual existence (cf. 2.1.2). However, they have a natural identifier—
namely, (workchain_id , account_id)—because any account-chain contains
information about the state and updates of exactly one account (either a
simple account or smart contract—the distinction is unimportant here).

2.1.10. Dynamic splitting and merging of shardchains; cf. 2.7. A
less sophisticated system might use static sharding—for example, by using
the top eight bits of the account_id to select one of 256 pre-defined shards.

An important feature of the TON Blockchain is that it implements dy-
namic sharding, meaning that the number of shards is not fixed. Instead,
shard (w, s) can be automatically subdivided into shards (w, s.0) and (w, s.1)
if some formal conditions are met (essentially, if the transaction load on the
original shard is high enough for a prolonged period of time). Conversely,

8

2.1. TON Blockchain as a Collection of 2-Blockchains

if the load stays too low for some period of time, the shards (w, s.0) and
(w, s.1) can be automatically merged back into shard (w, s).

Initially, only one shard (w, ∅) is created for workchain w. Later, it is
subdivided into more shards, if and when this becomes necessary (cf. 2.7.6
and 2.7.8).

2.1.11. Basic workchain or Workchain Zero. While up to 232 workchains
can be defined with their specific rules and transactions, we initially define
only one, with workchain_id = 0. This workchain, called Workchain Zero
or the basic workchain, is the one used to work with TON smart contracts
and transfer TON coins, also known as Grams (cf. Appendix A). Most appli-
cations are likely to require only Workchain Zero. Shardchains of the basic
workchain will be called basic shardchains.

2.1.12. Block generation intervals. We expect a new block to be gener-
ated in each shardchain and the masterchain approximately once every five
seconds. This will lead to reasonably small transaction confirmation times.
New blocks of all shardchains are generated approximately simultaneously;
a new block of the masterchain is generated approximately one second later,
because it must contain the hashes of the latest blocks of all shardchains.

2.1.13. Using the masterchain to make workchains and shardchains
tightly coupled. Once the hash of a block of a shardchain is incorporated
into a block of the masterchain, that shardchain block and all its ancestors
are considered “canonical”, meaning that they can be referenced from the sub-
sequent blocks of all shardchains as something fixed and immutable. In fact,
each new shardchain block contains a hash of the most recent masterchain
block, and all shardchain blocks referenced from that masterchain block are
considered immutable by the new block.

Essentially, this means that a transaction or a message committed in a
shardchain block may be safely used in the very next blocks of the other
shardchains, without needing to wait for, say, twenty confirmations (i.e.,
twenty blocks generated after the original block in the same blockchain) be-
fore forwarding a message or taking other actions based on a previous trans-
action, as is common in most proposed “loosely-coupled” systems (cf. 2.8.14),
such as EOS. This ability to use transactions and messages in other shard-
chains a mere five seconds after being committed is one of the reasons we
believe our “tightly-coupled” system, the first of its kind, will be able to
deliver unprecedented performance (cf. 2.8.12 and 2.8.14).

9

2.1. TON Blockchain as a Collection of 2-Blockchains

2.1.14. Masterchain block hash as a global state. According to 2.1.13,
the hash of the last masterchain block completely determines the overall state
of the system from the perspective of an external observer. One does not need
to monitor the state of all shardchains separately.

2.1.15. Generation of new blocks by validators; cf. 2.6. The TON
Blockchain uses a Proof-of-Stake (PoS) approach for generating new blocks in
the shardchains and the masterchain. This means that there is a set of, say,
up to a few hundred validators—special nodes that have deposited stakes
(large amounts of TON coins) by a special masterchain transaction to be
eligible for new block generation and validation.

Then a smaller subset of validators is assigned to each shard (w, s) in a
deterministic pseudorandom way, changing approximately every 1024 blocks.
This subset of validators suggests and reaches consensus on what the next
shardchain block would be, by collecting suitable proposed transactions from
the clients into new valid block candidates. For each block, there is a pseudo-
randomly chosen order on the validators to determine whose block candidate
has the highest priority to be committed at each turn.

Validators and other nodes check the validity of the proposed block candi-
dates; if a validator signs an invalid block candidate, it may be automatically
punished by losing part or all of its stake, or by being suspended from the
set of validators for some time. After that, the validators should reach con-
sensus on the choice of the next block, essentially by an efficient variant of
the BFT (Byzantine Fault Tolerant; cf. 2.8.4) consensus protocol, similar to
PBFT [4] or Honey Badger BFT [11]. If consensus is reached, a new block
is created, and validators divide between themselves the transaction fees for
the transactions included, plus some newly-created (“minted”) coins.

Each validator can be elected to participate in several validator subsets;
in this case, it is expected to run all validation and consensus algorithms in
parallel.

After all new shardchain blocks are generated or a timeout is passed, a
new masterchain block is generated, including the hashes of the latest blocks
of all shardchains. This is done by BFT consensus of all validators.2

More detail on the TON PoS approach and its economical model is pro-
vided in section 2.6.

2Actually, two-thirds by stake is enough to achieve consensus, but an effort is made to
collect as many signatures as possible

10

2.1. TON Blockchain as a Collection of 2-Blockchains

2.1.16. Forks of the masterchain. A complication that arises from our
tightly-coupled approach is that switching to a different fork in the master-
chain will almost necessarily require switching to another fork in at least
some of the shardchains. On the other hand, as long as there are no forks
in the masterchain, no forks in the shardchain are even possible, because no
blocks in the alternative forks of the shardchains can become “canonical” by
having their hashes incorporated into a masterchain block.

The general rule is that if masterchain block B′ is a predecessor of B,
B′ includes hash Hash(B′w,s) of (w, s)-shardchain block B′w,s, and B includes
hash Hash(Bw,s), then B′w,s must be a predecessor of Bw,s; otherwise, the
masterchain block B is invalid.

We expect masterchain forks to be rare, next to non-existent, because
in the BFT paradigm adopted by the TON Blockchain they can happen
only in the case of incorrect behavior by a majority of validators (cf. 2.6.1
and 2.6.15), which would imply significant stake losses by the offenders.
Therefore, no true forks in the shardchains should be expected. Instead,
if an invalid shardchain block is detected, it will be corrected by means of
the “vertical blockchain” mechanism of the 2-blockchain (cf. 2.1.17), which
can achieve this goal without forking the “horizontal blockchain” (i.e., the
shardchain). The same mechanism can be used to fix non-fatal mistakes in
the masterchain blocks as well.

2.1.17. Correcting invalid shardchain blocks. Normally, only valid
shardchain blocks will be committed, because validators assigned to the
shardchain must reach a two-thirds Byzantine consensus before a new block
can be committed. However, the system must allow for detection of previ-
ously committed invalid blocks and their correction.

Of course, once an invalid shardchain block is found—either by a validator
(not necessarily assigned to this shardchain) or by a “fisherman” (any node
of the system that made a certain deposit to be able to raise questions about
block validity; cf. 2.6.4)—the invalidity claim and its proof are committed
into the masterchain, and the validators that have signed the invalid block are
punished by losing part of their stake and/or being temporarily suspended
from the set of validators (the latter measure is important for the case of an
attacker stealing the private signing keys of an otherwise benign validator).

However, this is not sufficient, because the state of the overall system
(TON Blockchain) turns out to be invalid because of the invalid shardchain
block previously committed. This invalid block must be replaced by a newer

11

2.1. TON Blockchain as a Collection of 2-Blockchains

valid version.
Most systems would achieve this by “rolling back” to the last block before

the invalid one in this shardchain and the last blocks unaffected by messages
propagated from the invalid block in each of the other shardchains, and
creating a new fork from these blocks. This approach has the disadvantage
that a large number of otherwise correct and committed transactions are
suddenly rolled back, and it is unclear whether they will be included later at
all.

The TON Blockchain solves this problem by making each “block” of
each shardchain and of the masterchain (“horizontal blockchains”) a small
blockchain (“vertical blockchain”) by itself, containing different versions of
this “block”, or their “differences”. Normally, the vertical blockchain consists
of exactly one block, and the shardchain looks like a classical blockchain.
However, once the invalidity of a block is confirmed and committed into a
masterchain block, the “vertical blockchain” of the invalid block is allowed to
grow by a new block in the vertical direction, replacing or editing the invalid
block. The new block is generated by the current validator subset for the
shardchain in question.

The rules for a new “vertical” block to be valid are quite strict. In par-
ticular, if a virtual “account-chain block” (cf. 2.1.2) contained in the invalid
block is valid by itself, it must be left unchanged by the new vertical block.

Once a new “vertical” block is committed on top of the invalid block, its
hash is published in a new masterchain block (or rather in a new “vertical”
block, lying above the original masterchain block where the hash of the invalid
shardchain block was originally published), and the changes are propagated
further to any shardchain blocks referring to the previous version of this block
(e.g., those having received messages from the incorrect block). This is fixed
by committing new “vertical” blocks in vertical blockchains for all blocks
previously referring to the “incorrect” block; new vertical blocks will refer
to the most recent (corrected) versions instead. Again, strict rules forbid
changing account-chains that are not really affected (i.e., that receive the
same messages as in the previous version). In this way, fixing an incorrect
block generates “ripples” that are ultimately propagated towards the most
recent blocks of all affected shardchains; these changes are reflected in new
“vertical” masterchain blocks as well.

Once the “history rewriting” ripples reach the most recent blocks, the new
shardchain blocks are generated in one version only, being successors of the
newest block versions only. This means that they will contain references to

12

2.1. TON Blockchain as a Collection of 2-Blockchains

the correct (most recent) vertical blocks from the very beginning.
The masterchain state implicitly defines a map transforming the hash of

the first block of each “vertical” blockchain into the hash of its latest version.
This enables a client to identify and locate any vertical blockchain by the
hash of its very first (and usually the only) block.

2.1.18. TON coins and multi-currency workchains. The TON Block-
chain supports up to 232 different “cryptocurrencies”, “coins”, or “tokens”,
distinguished by a 32-bit currency_id . New cryptocurrencies can be added
by special transactions in the masterchain. Each workchain has a basic cryp-
tocurrency, and can have several additional cryptocurrencies.

There is one special cryptocurrency with currency_id = 0, namely, the
TON coin, also known as the Gram (cf. Appendix A). It is the basic cryp-
tocurrency of Workchain Zero. It is also used for transaction fees and val-
idator stakes.

In principle, other workchains may collect transaction fees in other to-
kens. In this case, some smart contract for automated conversion of these
transaction fees into Grams should be provided.

2.1.19. Messaging and value transfer. Shardchains belonging to the
same or different workchains may send messages to each other. While the
exact form of the messages allowed depends on the receiving workchain and
receiving account (smart contract), there are some common fields making
inter-workchain messaging possible. In particular, each message may have
some value attached, in the form of a certain amount of Grams (TON coins)
and/or other registered cryptocurrencies, provided they are declared as ac-
ceptable cryptocurrencies by the receiving workchain.

The simplest form of such messaging is a value transfer from one (usually
not a smart-contract) account to another.

2.1.20. TON Virtual Machine. The TON Virtual Machine, also ab-
breviated as TON VM or TVM , is the virtual machine used to execute
smart-contract code in the masterchain and in the basic workchain. Other
workchains may use other virtual machines alongside or instead of the TVM.

Here we list some of its features. They are discussed further in 2.3.12,
2.3.14 and elsewhere.

• TVM represents all data as a collection of (TVM) cells (cf. 2.3.14).
Each cell contains up to 128 data bytes and up to 4 references to other

13

2.1. TON Blockchain as a Collection of 2-Blockchains

cells. As a consequence of the “everything is a bag of cells” philosophy
(cf. 2.5.14), this enables TVM to work with all data related to the TON
Blockchain, including blocks and blockchain global state if necessary.

• TVM can work with values of arbitrary algebraic data types (cf. 2.3.12),
represented as trees or directed acyclic graphs of TVM cells. However,
it is agnostic towards the existence of algebraic data types; it just works
with cells.

• TVM has built-in support for hashmaps (cf. 2.3.7).

• TVM is a stack machine. Its stack keeps either 64-bit integers or cell
references.

• 64-bit, 128-bit and 256-bit arithmetic is supported. All n-bit arithmetic
operations come in three flavors: for unsigned integers, for signed inte-
gers and for integers modulo 2n (no automatic overflow checks in the
latter case).

• TVM has unsigned and signed integer conversion from n-bit to m-bit,
for all 0 ≤ m,n ≤ 256, with overflow checks.

• All arithmetic operations perform overflow checks by default, greatly
simplifying the development of smart contracts.

• TVM has “multiply-then-shift” and “shift-then-divide” arithmetic oper-
ations with intermediate values computed in a larger integer type; this
simplifies implementing fixed-point arithmetic.

• TVM offers support for bit strings and byte strings.

• Support for 256-bit Elliptic Curve Cryptography (ECC) for some pre-
defined curves, including Curve25519, is present.

• Support for Weil pairings on some elliptic curves, useful for fast imple-
mentation of zk-SNARKs, is also present.

• Support for popular hash functions, including sha256, is present.

• TVM can work with Merkle proofs (cf. 5.1.9).

14

2.2. Generalities on Blockchains

• TVM offers support for “large” or “global” smart contracts. Such smart
contracts must be aware of sharding (cf. 2.3.18 and 2.3.16). Usual
(local) smart contracts can be sharding-agnostic.

• TVM supports closures.

• A “spineless tagless G-machine” [13] can be easily implemented inside
TVM.

Several high-level languages can be designed for TVM, in addition to the
“TVM assembly”. All these languages will have static types and will support
algebraic data types. We envision the following possibilities:

• A Java-like imperative language, with each smart contract resembling
a separate class.

• A lazy functional language (think of Haskell).

• An eager functional language (think of ML).

2.1.21. Configurable parameters. An important feature of the TON
Blockchain is that many of its parameters are configurable. This means that
they are part of the masterchain state, and can be changed by certain special
proposal/vote/result transactions in the masterchain, without any need for
hard forks. Changing such parameters will require collecting two-thirds of
validator votes and more than half of the votes of all other participants who
would care to take part in the voting process in favor of the proposal.

2.2 Generalities on Blockchains

2.2.1. General blockchain definition. In general, any (true) blockchain
is a sequence of blocks, each block B containing a reference blk-prev(B) to
the previous block (usually by including the hash of the previous block into
the header of the current block), and a list of transactions. Each transaction
describes some transformation of the global blockchain state; the transactions
listed in a block are applied sequentially to compute the new state starting
from the old state, which is the resulting state after the evaluation of the
previous block.

15

2.2. Generalities on Blockchains

2.2.2. Relevance for the TON Blockchain. Recall that the TON Block-
chain is not a true blockchain, but a collection of 2-blockchains (i.e., of
blockchains of blockchains; cf. 2.1.1), so the above is not directly applicable
to it. However, we start with these generalities on true blockchains to use
them as building blocks for our more sophisticated constructions.

2.2.3. Blockchain instance and blockchain type. One often uses the
word blockchain to denote both a general blockchain type and its specific
blockchain instances, defined as sequences of blocks satisfying certain condi-
tions. For example, 2.2.1 refers to blockchain instances.

In this way, a blockchain type is usually a “subtype” of the type Block∗ of
lists (i.e., finite sequences) of blocks, consisting of those sequences of blocks
that satisfy certain compatibility and validity conditions:

Blockchain ⊂ Block∗ (1)

A better way to define Blockchain would be to say that Blockchain is a
dependent couple type, consisting of couples (B, v), with first component B :
Block∗ being of type Block∗ (i.e., a list of blocks), and the second component
v : isValidBc(B) being a proof or a witness of the validity of B. In this way,

Blockchain ≡ Σ(B:Block∗)isValidBc(B) (2)

We use here the notation for dependent sums of types borrowed from [16].

2.2.4. Dependent type theory, Coq and TL. Note that we are using
(Martin-Löf) dependent type theory here, similar to that used in the Coq3
proof assistant. A simplified version of dependent type theory is also used in
TL (Type Language),4 which will be used in the formal specification of the
TON Blockchain to describe the serialization of all data structures and the
layouts of blocks, transactions, and the like.

In fact, dependent type theory gives a useful formalization of what a proof
is, and such formal proofs (or their serializations) might become handy when
one needs to provide proof of invalidity for some block, for example.

2.2.5. TL, or the Type Language. Since TL (Type Language) will be
used in the formal specifications of TON blocks, transactions, and network
datagrams, it warrants a brief discussion.

3https://coq.inria.fr
4https://core.telegram.org/mtproto/TL

16

https://coq.inria.fr
https://core.telegram.org/mtproto/TL

2.2. Generalities on Blockchains

TL is a language suitable for description of dependent algebraic types,
which are allowed to have numeric (natural) and type parameters. Each
type is described by means of several constructors. Each constructor has a
(human-readable) identifier and a name, which is a bit string (32-bit integer
by default). Apart from that, the definition of a constructor contains a list
of fields along with their types.

A collection of constructor and type definitions is called a TL-scheme. It
is usually kept in one or several files with the suffix .tl.

An important feature of TL-schemes is that they determine an unambigu-
ous way of serializing and deserializing values (or objects) of algebraic types
defined. Namely, when a value needs to be serialized into a stream of bytes,
first the name of the constructor used for this value is serialized. Recursively
computed serializations of each field follow.

The description of a previous version of TL, suitable for serializing arbi-
trary objects into sequences of 32-bit integers, is available at https://core.
telegram.org/mtproto/TL. A new version of TL, called TL-B, is being de-
veloped for the purpose of describing the serialization of objects used by the
TON Project. This new version can serialize objects into streams of bytes
and even bits (not just 32-bit integers), and offers support for serialization
into a tree of TVM cells (cf. 2.3.14). A description of TL-B will be a part
of the formal specification of the TON Blockchain.

2.2.6. Blocks and transactions as state transformation operators.
Normally, any blockchain (type) Blockchain has an associated global state
(type) State, and a transaction (type) Transaction. The semantics of a
blockchain are to a large extent determined by the transaction application
function:

ev_trans′ : Transaction× State→ State? (3)

Here X? denotes MaybeX, the result of applying the Maybe monad to
type X. This is similar to our use of X∗ for ListX. Essentially, a value
of type X? is either a value of type X or a special value ⊥ indicating the
absence of an actual value (think about a null pointer). In our case, we use
State? instead of State as the result type because a transaction may be invalid
if invoked from certain original states (think about attempting to withdraw
from an account more money than it is actually there).

We might prefer a curried version of ev_trans′:

ev_trans : Transaction→ State→ State? (4)

17

https://core.telegram.org/mtproto/TL
https://core.telegram.org/mtproto/TL

2.2. Generalities on Blockchains

Because a block is essentially a list of transactions, the block evaluation
function

ev_block : Block→ State→ State? (5)

can be derived from ev_trans. It takes a block B : Block and the previous
blockchain state s : State (which might include the hash of the previous
block) and computes the next blockchain state s′ = ev_block(B)(s) : State,
which is either a true state or a special value ⊥ indicating that the next
state cannot be computed (i.e., that the block is invalid if evaluated from the
starting state given—for example, the block includes a transaction trying to
debit an empty account.)

2.2.7. Block sequence numbers. Each block B in the blockchain can be
referred to by its sequence number blk-seqno(B), starting from zero for the
very first block, and incremented by one whenever passing to the next block.
More formally,

blk-seqno(B) = blk-seqno
(
blk-prev(B)

)
+ 1 (6)

Notice that the sequence number does not identify a block uniquely in the
presence of forks.

2.2.8. Block hashes. Another way of referring to a block B is by its hash
blk-hash(B), which is actually the hash of the header of block B (however,
the header of the block usually contains hashes that depend on all content of
block B). Assuming that there are no collisions for the hash function used
(or at least that they are very improbable), a block is uniquely identified by
its hash.

2.2.9. Hash assumption. During formal analysis of blockchain algorithms,
we assume that there are no collisions for the k-bit hash function Hash :
Bytes∗ → 2k used:

Hash(s) = Hash(s′)⇒ s = s′ for any s, s′ ∈ Bytes∗ (7)

Here Bytes = {0 . . . 255} = 28 is the type of bytes, or the set of all byte
values, and Bytes∗ is the type or set of arbitrary (finite) lists of bytes; while
2 = {0, 1} is the bit type, and 2k is the set (or actually the type) of all k-bit
sequences (i.e., of k-bit numbers).

18

2.3. Blockchain State, Accounts and Hashmaps

Of course, (7) is impossible mathematically, because a map from an infi-
nite set to a finite set cannot be injective. A more rigorous assumption would
be

∀s, s′ : s 6= s′, P
(
Hash(s) = Hash(s′)

)
= 2−k (8)

However, this is not so convenient for the proofs. If (8) is used at most N
times in a proof with 2−kN < ε for some small ε (say, ε = 10−18), we can
reason as if (7) were true, provided we accept a failure probability ε (i.e., the
final conclusions will be true with probability at least 1− ε).

Final remark: in order to make the probability statement of (8) really
rigorous, one must introduce a probability distribution on the set Bytes∗ of
all byte sequences. A way of doing this is by assuming all byte sequences
of the same length l equiprobable, and setting the probability of observing a
sequence of length l equal to pl − pl+1 for some p→ 1−. Then (8) should be
understood as a limit of conditional probability P

(
Hash(s) = Hash(s′)|s 6=

s′
)
when p tends to one from below.

2.2.10. Hash used for the TON Blockchain. We are using the 256-bit
sha256 hash for the TON Blockchain for the time being. If it turns out to
be weaker than expected, it can be replaced by another hash function in the
future. The choice of the hash function is a configurable parameter of the
protocol, so it can be changed without hard forks as explained in 2.1.21.

2.3 Blockchain State, Accounts and Hashmaps

We have noted above that any blockchain defines a certain global state, and
each block and each transaction defines a transformation of this global state.
Here we describe the global state used by TON blockchains.

2.3.1. Account IDs. The basic account IDs used by TON blockchains—
or at least by its masterchain and Workchain Zero—are 256-bit integers,
assumed to be public keys for 256-bit Elliptic Curve Cryptography (ECC)
for a specific elliptic curve. In this way,

account_id : Account = uint256 = 2256 (9)

Here Account is the account type, while account_id : Account is a specific
variable of type Account.

Other workchains can use other account ID formats, 256-bit or otherwise.
For example, one can use Bitcoin-style account IDs, equal to sha256 of an
ECC public key.

19

2.3. Blockchain State, Accounts and Hashmaps

However, the bit length l of an account ID must be fixed during the
creation of the workchain (in the masterchain), and it must be at least 64,
because the first 64 bits of account_id are used for sharding and message
routing.

2.3.2. Main component: Hashmaps. The principal component of the
TON blockchain state is a hashmap. In some cases we consider (partially
defined) “maps” h : 2n 99K 2m. More generally, we might be interested in
hashmaps h : 2n 99K X for a composite type X. However, the source (or
index) type is almost always 2n.

Sometimes, we have a “default value” empty : X, and the hashmap h :
2n → X is “initialized” by its “default value” i 7→ empty.

2.3.3. Example: TON account balances. An important example is given
by TON account balances. It is a hashmap

balance : Account→ uint128 (10)

mapping Account = 2256 into a Gram (TON coin) balance of type uint128 =
2128. This hashmap has a default value of zero, meaning that initially (before
the first block is processed) the balance of all accounts is zero.

2.3.4. Example: smart-contract persistent storage. Another example
is given by smart-contract persistent storage, which can be (very approxi-
mately) represented as a hashmap

storage : 2256 99K 2256 (11)

This hashmap also has a default value of zero, meaning that uninitialized
cells of persistent storage are assumed to be zero.

2.3.5. Example: persistent storage of all smart contracts. Because
we have more than one smart contract, distinguished by account_id , each
having its separate persistent storage, we must actually have a hashmap

Storage : Account 99K (2256 99K 2256) (12)

mapping account_id of a smart contract into its persistent storage.

20

2.3. Blockchain State, Accounts and Hashmaps

2.3.6. Hashmap type. The hashmap is not just an abstract (partially
defined) function 2n 99K X; it has a specific representation. Therefore, we
suppose that we have a special hashmap type

Hashmap(n,X) : Type (13)

corresponding to a data structure encoding a (partial) map 2n 99K X. We
can also write

Hashmap(n : nat)(X : Type) : Type (14)

or
Hashmap : nat → Type→ Type (15)

We can always transform h : Hashmap(n,X) into a map hget(h) : 2n → X?.
Henceforth, we usually write h[i] instead of hget(h)(i):

h[i] :≡ hget(h)(i) : X? for any i : 2n, h : Hashmap(n,X) (16)

2.3.7. Definition of hashmap type as a Patricia tree. Logically, one
might define Hashmap(n,X) as an (incomplete) binary tree of depth n with
edge labels 0 and 1 and with values of type X in the leaves. Another way to
describe the same structure would be as a (bitwise) trie for binary strings of
length equal to n.

In practice, we prefer to use a compact representation of this trie, by
compressing each vertex having only one child with its parent. The result-
ing representation is known as a Patricia tree or a binary radix tree. Each
intermediate vertex now has exactly two children, labeled by two non-empty
binary strings, beginning with zero for the left child and with one for the
right child.

In other words, there are two types of (non-root) nodes in a Patricia tree:

• Leaf(x), containing value x of type X.

• Node(l, sl, r, sr), where l is the (reference to the) left child or subtree,
sl is the bitstring labeling the edge connecting this vertex to its left
child (always beginning with 0), r is the right subtree, and sr is the
bitstring labeling the edge to the right child (always beginning with 1).

A third type of node, to be used only once at the root of the Patricia tree,
is also necessary:

21

2.3. Blockchain State, Accounts and Hashmaps

• Root(n, s0, t), where n is the common length of index bitstrings of
Hashmap(n,X), s0 is the common prefix of all index bitstrings, and t
is a reference to a Leaf or a Node.

If we want to allow the Patricia tree to be empty, a fourth type of (root)
node would be used:

• EmptyRoot(n), where n is the common length of all index bitstrings.

We define the height of a Patricia tree by

height(Leaf(x)) = 0 (17)
height

(
Node(l, sl, r, sr)

)
= height(l) + len(sl) = height(r) + len(sr)

(18)
height

(
Root(n, s0, t)

)
= len(s0) + height(t) = n (19)

The last two expressions in each of the last two formulas must be equal. We
use Patricia trees of height n to represent values of type Hashmap(n,X).

If there are N leaves in the tree (i.e., our hashmap contains N values),
then there are exactly N − 1 intermediate vertices. Inserting a new value
always involves splitting an existing edge by inserting a new vertex in the
middle and adding a new leaf as the other child of this new vertex. Deleting
a value from a hashmap does the opposite: a leaf and its parent are deleted,
and the parent’s parent and its other child become directly linked.

2.3.8. Merkle-Patricia trees. When working with blockchains, we want
to be able to compare Patricia trees (i.e., hash maps) and their subtrees,
by reducing them to a single hash value. The classical way of achieving
this is given by the Merkle tree. Essentially, we want to describe a way of
hashing objects h of type Hashmap(n,X) with the aid of a hash function
Hash defined for binary strings, provided we know how to compute hashes
Hash(x) of objects x : X (e.g., by applying the hash function Hash to a
binary serialization of object x).

One might define Hash(h) recursively as follows:

Hash
(
Leaf(x)

)
:= Hash(x) (20)

Hash
(
Node(l, sl, r, sr)

)
:= Hash

(
Hash(l).Hash(r).code(sl).code(sr)

)
(21)

Hash
(
Root(n, s0, t)

)
:= Hash

(
code(n).code(s0).Hash(t)

)
(22)

22

2.3. Blockchain State, Accounts and Hashmaps

Here s.t denotes the concatenation of (bit) strings s and t, and code(s) is
a prefix code for all bit strings s. For example, one might encode 0 by 10, 1
by 11, and the end of the string by 0.5

We will see later (cf. 2.3.12 and 2.3.14) that this is a (slightly tweaked)
version of recursively defined hashes for values of arbitrary (dependent) al-
gebraic types.

2.3.9. Recomputing Merkle tree hashes. This way of recursively defin-
ing Hash(h), called a Merkle tree hash, has the advantage that, if one explic-
itly stores Hash(h′) along with each node h′ (resulting in a structure called a
Merkle tree, or, in our case, a Merkle–Patricia tree), one needs to recompute
only at most n hashes when an element is added to, deleted from or changed
in the hashmap.

In this way, if one represents the global blockchain state by a suitable
Merkle tree hash, it is easy to recompute this state hash after each transac-
tion.

2.3.10. Merkle proofs. Under the assumption (7) of “injectivity” of the
chosen hash function Hash, one can construct a proof that, for a given value
z of Hash(h), h : Hashmap(n,X), one has hget(h)(i) = x for some i : 2n

and x : X. Such a proof will consist of the path in the Merkle–Patricia tree
from the leaf corresponding to i to the root, augmented by the hashes of all
siblings of all nodes occurring on this path.

In this way, a light node6 knowing only the value of Hash(h) for some
hashmap h (e.g., smart-contract persistent storage or global blockchain state)
might request from a full node7 not only the value x = h[i] = hget(h)(i), but
such a value along with a Merkle proof starting from the already known value

5One can show that this encoding is optimal for approximately half of all edge labels
of a Patricia tree with random or consecutive indices. Remaining edge labels are likely to
be long (i.e., almost 256 bits long). Therefore, a nearly optimal encoding for edge labels
is to use the above code with prefix 0 for “short” bit strings, and encode 1, then nine bits
containing length l = |s| of bitstring s, and then the l bits of s for “long” bitstrings (with
l ≥ 10).

6A light node is a node that does not keep track of the full state of a shardchain;
instead, it keeps minimal information such as the hashes of the several most recent blocks,
and relies on information obtained from full nodes when it becomes necessary to inspect
some parts of the full state.

7A full node is a node keeping track of the complete up-to-date state of the shardchain
in question.

23

2.3. Blockchain State, Accounts and Hashmaps

Hash(h). Then, under assumption (7), the light node can check for itself
that x is indeed the correct value of h[i].

In some cases, the client may want to obtain the value y = Hash(x) =
Hash(h[i]) instead—for example, if x itself is very large (e.g., a hashmap
itself). Then a Merkle proof for (i, y) can be provided instead. If x is a
hashmap as well, then a second Merkle proof starting from y = Hash(x)
may be obtained from a full node, to provide a value x[j] = h[i][j] or just its
hash.

2.3.11. Importance of Merkle proofs for a multi-chain system such
as TON. Notice that a node normally cannot be a full node for all shard-
chains existing in the TON environment. It usually is a full node only for
some shardchains—for instance, those containing its own account, a smart
contract it is interested in, or those that this node has been assigned to be
a validator of. For other shardchains, it must be a light node—otherwise
the storage, computing and network bandwidth requirements would be pro-
hibitive. This means that such a node cannot directly check assertions about
the state of other shardchains; it must rely on Merkle proofs obtained from
full nodes for those shardchains, which is as safe as checking by itself unless
(7) fails (i.e., a hash collision is found).

2.3.12. Peculiarities of TON VM. The TON VM or TVM (Telegram Vir-
tual Machine), used to run smart contracts in the masterchain andWorkchain
Zero, is considerably different from customary designs inspired by the EVM
(Ethereum Virtual Machine): it works not just with 256-bit integers, but ac-
tually with (almost) arbitrary “records”, “structures”, or “sum-product types”,
making it more suitable to execute code written in high-level (especially func-
tional) languages. Essentially, TVM uses tagged data types, not unlike those
used in implementations of Prolog or Erlang.

One might imagine first that the state of a TVM smart contract is not
just a hashmap 2256 → 2256, or Hashmap(256,2256), but (as a first step)
Hashmap(256, X), where X is a type with several constructors, enabling it
to store, apart from 256-bit integers, other data structures, including other
hashmaps Hashmap(256, X) in particular. This would mean that a cell of
TVM (persistent or temporary) storage—or a variable or an element of an
array in a TVM smart-contract code—may contain not only an integer, but
a whole new hashmap. Of course, this would mean that a cell contains not
just 256 bits, but also, say, an 8-bit tag, describing how these 256 bits should
be interpreted.

24

2.3. Blockchain State, Accounts and Hashmaps

In fact, values do not need to be precisely 256-bit. The value format
used by TVM consists of a sequence of raw bytes and references to other
structures, mixed in arbitrary order, with some descriptor bytes inserted
in suitable locations to be able to distinguish pointers from raw data (e.g.,
strings or integers); cf. 2.3.14.

This raw value format may be used to implement arbitrary sum-product
algebraic types. In this case, the value would contain a raw byte first, de-
scribing the “constructor” being used (from the perspective of a high-level
language), and then other “fields” or “constructor arguments”, consisting of
raw bytes and references to other structures depending on the constructor
chosen (cf. 2.2.5). However, TVM does not know anything about the corre-
spondence between constructors and their arguments; the mixture of bytes
and references is explicitly described by certain descriptor bytes.8

The Merkle tree hashing is extended to arbitrary such structures: to
compute the hash of such a structure, all references are recursively replaced
by hashes of objects referred to, and then the hash of the resulting byte string
(descriptor bytes included) is computed.

In this way, the Merkle tree hashing for hashmaps, described in 2.3.8, is
just a special case of hashing for arbitrary (dependent) algebraic data types,
applied to type Hashmap(n,X) with two constructors.9

2.3.13. Persistent storage of TON smart contracts. Persistent storage
of a TON smart contract essentially consists of its “global variables”, pre-
served between calls to the smart contract. As such, it is just a “product”,
“tuple”, or “record” type, consisting of fields of the correct types, correspond-
ing to one global variable each. If there are too many global variables, they
cannot fit into one TON cell because of the global restriction on TON cell
size. In such a case, they are split into several records and organized into a
tree, essentially becoming a “product of products” or “product of products of
products” type instead of just a product type.

2.3.14. TVM Cells. Ultimately, the TON VM keeps all data in a collection
of (TVM) cells. Each cell contains two descriptor bytes first, indicating how

8These two descriptor bytes, present in any TVM cell, describe only the total number
of references and the total number of raw bytes; references are kept together either before
or after all raw bytes.

9Actually, Leaf and Node are constructors of an auxiliary type, HashmapAux(n,X).
Type Hashmap(n,X) has constructors Root and EmptyRoot, with Root containing a
value of type HashmapAux(n,X).

25

2.3. Blockchain State, Accounts and Hashmaps

many bytes of raw data are present in this cell (up to 128) and how many
references to other cells are present (up to four). Then these raw data bytes
and references follow. Each cell is referenced exactly once, so we might have
included in each cell a reference to its “parent” (the only cell referencing this
one). However, this reference need not be explicit.

In this way, the persistent data storage cells of a TON smart contract
are organized into a tree,10 with a reference to the root of this tree kept in
the smart-contract description. If necessary, a Merkle tree hash of this entire
persistent storage is recursively computed, starting from the leaves and then
simply replacing all references in a cell with the recursively computed hashes
of the referenced cells, and subsequently computing the hash of the byte
string thus obtained.

2.3.15. Generalized Merkle proofs for values of arbitrary algebraic
types. Because the TON VM represents a value of arbitrary algebraic type
by means of a tree consisting of (TVM) cells, and each cell has a well-defined
(recursively computed) Merkle hash, depending in fact on the whole subtree
rooted in this cell, we can provide “generalized Merkle proofs” for (parts of)
values of arbitrary algebraic types, intended to prove that a certain subtree
of a tree with a known Merkle hash takes a specific value or a value with a
specific hash. This generalizes the approach of 2.3.10, where only Merkle
proofs for x[i] = y have been considered.

2.3.16. Support for sharding in TON VM data structures. We have
just outlined how the TON VM, without being overly complicated, sup-
ports arbitrary (dependent) algebraic data types in high-level smart-contract
languages. However, sharding of large (or global) smart contracts requires
special support on the level of TON VM. To this end, a special version
of the hashmap type has been added to the system, amounting to a “map”
Account 99K X. This “map” might seem equivalent to Hashmap(m,X), where
Account = 2m. However, when a shard is split in two, or two shards are
merged, such hashmaps are automatically split in two, or merged back, so as
to keep only those keys that belong to the corresponding shard.

2.3.17. Payment for persistent storage. A noteworthy feature of the
TON Blockchain is the payment exacted from smart contracts for storing

10Logically; the “bag of cells” representation described in 2.5.5 identifies all duplicate
cells, transforming this tree into a directed acyclic graph (dag) when serialized.

26

2.3. Blockchain State, Accounts and Hashmaps

their persistent data (i.e., for enlarging the total state of the blockchain). It
works as follows:

Each block declares two rates, nominated in the principal currency of the
blockchain (usually the Gram): the price for keeping one cell in the persistent
storage, and the price for keeping one raw byte in some cell of the persistent
storage. Statistics on the total numbers of cells and bytes used by each
account are stored as part of its state, so by multiplying these numbers by
the two rates declared in the block header, we can compute the payment
to be deducted from the account balance for keeping its data between the
previous block and the current one.

However, payment for persistent storage usage is not exacted for every
account and smart contract in each block; instead, the sequence number of
the block where this payment was last exacted is stored in the account data,
and when any action is done with the account (e.g., a value transfer or a
message is received and processed by a smart contract), the storage usage
payment for all blocks since the previous such payment is deducted from
the account balance before performing any further actions. If the account’s
balance would become negative after this, the account is destroyed.

A workchain may declare some number of raw data bytes per account
to be “free” (i.e., not participating in the persistent storage payments) in
order to make “simple” accounts, which keep only their balance in one or two
cryptocurrencies, exempt from these constant payments.

Notice that, if nobody sends any messages to an account, its persistent
storage payments are not collected, and it can exist indefinitely. However,
anybody can send, for instance, an empty message to destroy such an account.
A small incentive, collected from part of the original balance of the account
to be destroyed, can be given to the sender of such a message. We expect,
however, that the validators would destroy such insolvent accounts for free,
simply to decrease the global blockchain state size and to avoid keeping large
amounts of data without compensation.

Payments collected for keeping persistent data are distributed among the
validators of the shardchain or the masterchain (proportionally to their stakes
in the latter case).

2.3.18. Local and global smart contracts; smart-contract instances.
A smart contract normally resides just in one shard, selected according to the
smart contract’s account_id , similarly to an “ordinary” account. This is usu-
ally sufficient for most applications. However, some “high-load” smart con-

27

2.3. Blockchain State, Accounts and Hashmaps

tracts may want to have an “instance” in each shardchain of some workchain.
To achieve this, they must commit their creating transaction into all shard-
chains. This can be done, for instance, by committing this transaction into
the “root” shardchain (w, ∅)11 of the workchain w and paying a large com-
mission for this. This is a sort of “broadcast” feature for all shards, and as
such, it must be quite expensive.

This action effectively creates instances of the smart contract in each
shard, with separate balances. Originally, the balance transferred in the
creating transaction is distributed simply by giving the instance in shard
(w, s) the 2−|s| part of the total balance. When a shard splits into two child
shards, balances of all instances of global smart contracts are split in half;
when two shards merge, balances are added together.

In some cases, splitting/merging instances of global smart contracts may
involve (delayed) execution of special methods of these smart contracts. By
default, the balances are split and merged as described above, and some
special “account-indexed” hashmaps are also automatically split and merged
(cf. 2.3.16).

2.3.19. Limiting splitting of smart contracts. A global smart contract
may limit its splitting depth d upon its creation, in order to make persistent
storage expenses more predictable. This means that, if shardchain (w, s) with
|s| ≥ d splits in two, only one of two new shardchains inherits an instance of
the smart contract. This shardchain is chosen deterministically: each global
smart contract has some “account_id ”, which is essentially the hash of its
creating transaction, and its instances have the same account_id with the
first ≤ d bits replaced by suitable values needed to fall into the correct shard.
This account_id selects which shard will inherit the smart-contract instance
after splitting.

2.3.20. Account/Smart-contract state. We can summarize all of the
above to conclude that an account or smart-contract state consists of the
following:

• A balance in the principal currency of the blockchain

• A balance in other currencies of the blockchain

• Smart-contract code (or its hash)
11A more expensive alternative is to publish such a “global” smart contract in the mas-

terchain.

28

2.4. Messages Between Shardchains

• Smart-contract persistent data (or its Merkle hash)

• Statistics on the number of persistent storage cells and raw bytes used

• The last time (actually, the masterchain block number) when payment
for smart-contract persistent storage was collected

• The public key needed to transfer currency and send messages from this
account (optional; by default equal to account_id itself). In some cases,
more sophisticated signature checking code may be located here, similar
to what is done for Bitcoin transaction outputs; then the account_id
will be equal to the hash of this code.

We also need to keep somewhere, either in the account state or in some other
account-indexed hashmap, the following data:

• The output message queue of the account (cf. 2.4.17)

• The collection of (hashes of) recently delivered messages (cf. 2.4.23)

Not all of these are really required for every account; for example, smart-
contract code is needed only for smart contracts, but not for “simple” ac-
counts. Furthermore, while any account must have a non-zero balance in
the principal currency (e.g., Grams for the masterchain and shardchains of
the basic workchain), it may have balances of zero in other currencies. In
order to avoid keeping unused data, a sum-product type (depending on the
workchain) is defined (during the workchain’s creation), which uses different
tag bytes (e.g., TL constructors; cf. 2.2.5) to distinguish between different
“constructors” used. Ultimately, the account state is itself kept as a collection
of cells of the TVM persistent storage.

2.4 Messages Between Shardchains

An important component of the TON Blockchain is the messaging system
between blockchains. These blockchains may be shardchains of the same
workchain, or of different workchains.

2.4.1. Messages, accounts and transactions: a bird’s eye view of the
system. Messages are sent from one account to another. Each transaction
consists of an account receiving one message, changing its state according to
certain rules, and generating several (maybe one or zero) new messages to

29

2.4. Messages Between Shardchains

other accounts. Each message is generated and received (delivered) exactly
once.

This means that messages play a fundamental role in the system, com-
parable to that of accounts (smart contracts). From the perspective of the
Infinite Sharding Paradigm (cf. 2.1.2), each account resides in its separate
“account-chain”, and the only way it can affect the state of some other account
is by sending a message.

2.4.2. Accounts as processes or actors; Actor model. One might think
about accounts (and smart contracts) as “processes”, or “actors”, that are
able to process incoming messages, change their internal state and generate
some outbound messages as a result. This is closely related to the so-called
Actor model, used in languages such as Erlang (however, actors in Erlang are
usually called “processes”). Since new actors (i.e., smart contracts) are also
allowed to be created by existing actors as a result of processing an inbound
message, the correspondence with the Actor model is essentially complete.

2.4.3. Message recipient. Any message has its recipient, characterized by
the target workchain identifier w (assumed by default to be the same as that
of the originating shardchain), and the recipient account account_id . The
exact format (i.e., number of bits) of account_id depends on w; however, the
shard is always determined by its first (most significant) 64 bits.

2.4.4. Message sender. In most cases, a message has a sender, charac-
terized again by a (w′, account_id ′) pair. If present, it is located after the
message recipient and message value. Sometimes, the sender is unimportant
or it is somebody outside the blockchain (i.e., not a smart contract), in which
case this field is absent.

Notice that the Actor model does not require the messages to have an
implicit sender. Instead, messages may contain a reference to the Actor to
which an answer to the request should be sent; usually it coincides with the
sender. However, it is useful to have an explicit unforgeable sender field in a
message in a cryptocurrency (Byzantine) environment.

2.4.5. Message value. Another important characteristic of a message is
its attached value, in one or several cryptocurrencies supported both by the
source and by the target workchain. The value of the message is indicated at
its very beginning immediately after the message recipient; it is essentially a
list of (currency_id , value) pairs.

30

2.4. Messages Between Shardchains

Notice that “simple” value transfers between “simple” accounts are just
empty (no-op) messages with some value attached to them. On the other
hand, a slightly more complicated message body might contain a simple text
or binary comment (e.g., about the purpose of the payment).

2.4.6. External messages, or “messages from nowhere”. Some mes-
sages arrive into the system “from nowhere”—that is, they are not generated
by an account (smart contract or not) residing in the blockchain. The most
typical example arises when a user wants to transfer some funds from an
account controlled by her to some other account. In this case, the user sends
a “message from nowhere” to her own account, requesting it to generate a
message to the receiving account, carrying the specified value. If this mes-
sage is correctly signed, her account receives it and generates the required
outbound messages.

In fact, one might consider a “simple” account as a special case of a smart
contract with predefined code. This smart contract receives only one type of
message. Such an inbound message must contain a list of outbound messages
to be generated as a result of delivering (processing) the inbound message,
along with a signature. The smart contract checks the signature, and, if it is
correct, generates the required messages.

Of course, there is a difference between “messages from nowhere” and
normal messages, because the “messages from nowhere” cannot bear value,
so they cannot pay for their “gas” (i.e., their processing) themselves. Instead,
they are tentatively executed with a small gas limit before even being sug-
gested for inclusion in a new shardchain block; if the execution fails (the
signature is incorrect), the “message from nowhere” is deemed incorrect and
is discarded. If the execution does not fail within the small gas limit, the mes-
sage may be included in a new shardchain block and processed completely,
with the payment for the gas (processing capacity) consumed exacted from
the receiver’s account. “Messages from nowhere” can also define some trans-
action fee which is deducted from the receiver’s account on top of the gas
payment for redistribution to the validators.

In this sense, “messages from nowhere” or “external messages” take the
role of transaction candidates used in other blockchain systems (e.g., Bitcoin
and Ethereum).

2.4.7. Log messages, or “messages to nowhere”. Similarly, sometimes a
special message can be generated and routed to a specific shardchain not to
be delivered to its recipient, but to be logged in order to be easily observable

31

2.4. Messages Between Shardchains

by anybody receiving updates about the shard in question. These logged
messages may be output in a user’s console, or trigger an execution of some
script on an off-chain server. In this sense, they represent the external “out-
put” of the “blockchain supercomputer”, just as the “messages from nowhere”
represent the external “input” of the “blockchain supercomputer”.

2.4.8. Interaction with off-chain services and external blockchains.
These external input and output messages can be used for interacting with
off-chain services and other (external) blockchains, such as Bitcoin or Ethe-
reum. One might create tokens or cryptocurrencies inside the TON Block-
chain pegged to Bitcoins, Ethers or any ERC-20 tokens defined in the Ethe-
reum blockchain, and use “messages from nowhere” and “messages to nowhere”,
generated and processed by scripts residing on some third-party off-chain
servers, to implement the necessary interaction between the TON Blockchain
and these external blockchains.

2.4.9. Message body. The message body is simply a sequence of bytes,
the meaning of which is determined only by the receiving workchain and/or
smart contract. For blockchains using TON VM, this could be the serial-
ization of any TVM cell, generated automatically via the Send() operation.
Such a serialization is obtained simply by recursively replacing all references
in a TON VM cell with the cells referred to. Ultimately, a string of raw bytes
appears, which is usually prepended by a 4-byte “message type” or “message
constructor”, used to select the correct method of the receiving smart con-
tract.

Another option would be to use TL-serialized objects (cf. 2.2.5) as mes-
sage bodies. This might be especially useful for communication between
different workchains, one or both of which are not necessarily using the TON
VM.

2.4.10. Gas limit and other workchain/VM-specific parameters.
Sometimes a message needs to carry information about the gas limit, the
gas price, transaction fees and similar values that depend on the receiving
workchain and are relevant only for the receiving workchain, but not necessar-
ily for the originating workchain. Such parameters are included in or before
the message body, sometimes (depending on the workchain) with special 4-
byte prefixes indicating their presence (which can be defined by a TL-scheme;
cf. 2.2.5).

32

2.4. Messages Between Shardchains

2.4.11. Creating messages: smart contracts and transactions. There
are two sources of new messages. Most messages are created during smart-
contract execution (via the Send() operation in TON VM), when some smart
contract is invoked to process an incoming message. Alternatively, mes-
sages may come from the outside as “external messages” or “messages from
nowhere” (cf. 2.4.6).12

2.4.12. Delivering messages. When a message reaches the shardchain con-
taining its destination account,13 it is “delivered” to its destination account.
What happens next depends on the workchain; from an outside perspective,
it is important that such a message can never be forwarded further from this
shardchain.

For shardchains of the basic workchain, delivery consists in adding the
message value (minus any gas payments) to the balance of the receiving ac-
count, and possibly in invoking a message-dependent method of the receiving
smart contract afterwards, if the receiving account is a smart contract. In
fact, a smart contract has only one entry point for processing all incoming
messages, and it must distinguish between different types of messages by
looking at their first few bytes (e.g., the first four bytes containing a TL
constructor; cf. 2.2.5).

2.4.13. Delivery of a message is a transaction. Because the delivery of
a message changes the state of an account or smart contract, it is a special
transaction in the receiving shardchain, and is explicitly registered as such.
Essentially, all TON Blockchain transactions consist in the delivery of one
inbound message to its receiving account (smart contract), neglecting some
minor technical details.

2.4.14. Messages between instances of the same smart contract.
Recall that a smart contract may be local (i.e., residing in one shardchain as
any ordinary account does) or global (i.e., having instances in all shards, or
at least in all shards up to some known depth d; cf. 2.3.18). Instances of a
global smart contract may exchange special messages to transfer information
and value between each other if required. In this case, the (unforgeable)
sender account_id becomes important (cf. 2.4.4).

12The above needs to be literally true only for the basic workchain and its shardchains;
other workchains may provide other ways of creating messages.

13As a degenerate case, this shardchain may coincide with the originating shardchain—
for example, if we are working inside a workchain which has not yet been split.

33

2.4. Messages Between Shardchains

2.4.15. Messages to any instance of a smart contract; wildcard ad-
dresses. Sometimes a message (e.g., a client request) needs be delivered to
any instance of a global smart contract, usually the closest one (if there is one
residing in the same shardchain as the sender, it is the obvious candidate).
One way of doing this is by using a “wildcard recipient address”, with the
first d bits of the destination account_id allowed to take arbitrary values. In
practice, one will usually set these d bits to the same values as in the sender’s
account_id .

2.4.16. Input queue is absent. All messages received by a blockchain
(usually a shardchain; sometimes the masterchain)—or, essentially, by an
“account-chain” residing inside some shardchain—are immediately delivered
(i.e., processed by the receiving account). Therefore, there is no “input queue”
as such. Instead, if not all messages destined for a specific shardchain can
be processed because of limitations on the total size of blocks and gas usage,
some messages are simply left to accumulate in the output queues of the
originating shardchains.

2.4.17. Output queues. From the perspective of the Infinite Sharding
Paradigm (cf. 2.1.2), each account-chain (i.e., each account) has its own out-
put queue, consisting of all messages it has generated, but not yet delivered
to their recipients. Of course, account-chains have only a virtual existence;
they are grouped into shardchains, and a shardchain has an output “queue”,
consisting of the union of the output queues of all accounts belonging to the
shardchain.

This shardchain output “queue” imposes only partial order on its member
messages. Namely, a message generated in a preceding block must be deliv-
ered before any message generated in a subsequent block, and any messages
generated by the same account and having the same destination must be
delivered in the order of their generation.

2.4.18. Reliable and fast inter-chain messaging. It is of paramount
importance for a scalable multi-blockchain project such as TON to be able to
forward and deliver messages between different shardchains (cf. 2.1.3), even
if there are millions of them in the system. The messages should be delivered
reliably (i.e., messages should not be lost or delivered more than once) and
quickly. The TON Blockchain achieves this goal by using a combination of
two “message routing” mechanisms.

34

2.4. Messages Between Shardchains

2.4.19. Hypercube routing: “slow path” for messages with assured
delivery. The TON Blockchain uses “hypercube routing” as a slow, but
safe and reliable way of delivering messages from one shardchain to another,
using several intermediate shardchains for transit if necessary. Otherwise, the
validators of any given shardchain would need to keep track of the state of
(the output queues of) all other shardchains, which would require prohibitive
amounts of computing power and network bandwidth as the total quantity
of shardchains grows, thus limiting the scalability of the system. Therefore,
it is not possible to deliver messages directly from any shard to every other.
Instead, each shard is “connected” only to shards differing in exactly one
hexadecimal digit of their (w, s) shard identifiers (cf. 2.1.8). In this way, all
shardchains constitute a “hypercube” graph, and messages travel along the
edges of this hypercube.

If a message is sent to a shard different from the current one, one of the
hexadecimal digits (chosen deterministically) of the current shard identifier
is replaced by the corresponding digit of the target shard, and the resulting
identifier is used as the proximate target to forward the message to.14

The main advantage of hypercube routing is that the block validity con-
ditions imply that validators creating blocks of a shardchain must collect and
process messages from the output queues of “neighboring” shardchains, on
pain of losing their stakes. In this way, any message can be expected to reach
its final destination sooner or later; a message cannot be lost in transit or
delivered twice.

Notice that hypercube routing introduces some additional delays and ex-
penses, because of the necessity to forward messages through several interme-
diate shardchains. However, the number of these intermediate shardchains
grows very slowly, as the logarithm logN (more precisely, dlog16Ne − 1) of
the total number of shardchains N . For example, if N ≈ 250, there will
be at most one intermediate hop; and for N ≈ 4000 shardchains, at most
two. With four intermediate hops, we can support up to one million shard-
chains. We think this is a very small price to pay for the essentially unlimited
scalability of the system. In fact, it is not necessary to pay even this price:

2.4.20. Instant Hypercube Routing: “fast path” for messages. A
novel feature of the TON Blockchain is that it introduces a “fast path” for

14This is not necessarily the final version of the algorithm used to compute the next hop
for hypercube routing. In particular, hexadecimal digits may be replaced by r-bit groups,
with r a configurable parameter, not necessarily equal to four.

35

2.4. Messages Between Shardchains

forwarding messages from one shardchain to any other, allowing in most cases
to bypass the “slow” hypercube routing of 2.4.19 altogether and deliver the
message into the very next block of the final destination shardchain.

The idea is as follows. During the “slow” hypercube routing, the message
travels (in the network) along the edges of the hypercube, but it is delayed
(for approximately five seconds) at each intermediate vertex to be committed
into the corresponding shardchain before continuing its voyage.

To avoid unnecessary delays, one might instead relay the message along
with a suitable Merkle proof along the edges of the hypercube, without wait-
ing to commit it into the intermediate shardchains. In fact, the network mes-
sage should be forwarded from the validators of the “task group” (cf. 2.6.8)
of the original shard to the designated block producer (cf. 2.6.9) of the “task
group” of the destination shard; this might be done directly without going
along the edges of the hypercube. When this message with the Merkle proof
reaches the validators (more precisely, the collators; cf. 2.6.5) of the destina-
tion shardchain, they can commit it into a new block immediately, without
waiting for the message to complete its travel along the “slow path”. Then a
confirmation of delivery along with a suitable Merkle proof is sent back along
the hypercube edges, and it may be used to stop the travel of the message
along the “slow path”, by committing a special transaction.

Note that this “instant delivery” mechanism does not replace the “slow”
but failproof mechanism described in 2.4.19. The “slow path” is still needed
because the validators cannot be punished for losing or simply deciding not
to commit the “fast path” messages into new blocks of their blockchains.15

Therefore, both message forwarding methods are run in parallel, and the
“slow” mechanism is aborted only if a proof of success of the “fast” mechanism
is committed into an intermediate shardchain.16

2.4.21. Collecting input messages from output queues of neighbor-
ing shardchains. When a new block for a shardchain is proposed, some
of the output messages of the neighboring (in the sense of the routing hy-
percube of 2.4.19) shardchains are included in the new block as “input”
messages and immediately delivered (i.e., processed). There are certain rules

15However, the validators have some incentive to do so as soon as possible, because they
will be able to collect all forwarding fees associated with the message that have not yet
been consumed along the slow path.

16In fact, one might temporarily or permanently disable the “instant delivery” mecha-
nism altogether, and the system would continue working, albeit more slowly.

36

2.4. Messages Between Shardchains

as to the order in which these neighbors’ output messages must be processed.
Essentially, an “older” message (coming from a shardchain block referring to
an older masterchain block) must be delivered before any “newer” message;
and for messages coming from the same neighboring shardchain, the partial
order of the output queue described in 2.4.17 must be observed.

2.4.22. Deleting messages from output queues. Once an output queue
message is observed as having been delivered by a neighboring shardchain,
it is explicitly deleted from the output queue by a special transaction.

2.4.23. Preventing double delivery of messages. To prevent double
delivery of messages taken from the output queues of the neighboring shard-
chains, each shardchain (more precisely, each account-chain inside it) keeps
the collection of recently delivered messages (or just their hashes) as part of
its state. When a delivered message is observed to be deleted from the out-
put queue by its originating neighboring shardchain (cf. 2.4.22), it is deleted
from the collection of recently delivered messages as well.

2.4.24. Forwarding messages intended for other shardchains. Hy-
percube routing (cf. 2.4.19) means that sometimes outbound messages are
delivered not to the shardchain containing the intended recipient, but to a
neighboring shardchain lying on the hypercube path to the destination. In
this case, “delivery” consists in moving the inbound message to the outbound
queue. This is reflected explicitly in the block as a special forwarding trans-
action, containing the message itself. Essentially, this looks as if the message
had been received by somebody inside the shardchain, and one identical mes-
sage had been generated as result.

2.4.25. Payment for forwarding and keeping a message. The for-
warding transaction actually spends some gas (depending on the size of the
message being forwarded), so a gas payment is deducted from the value of
the message being forwarded on behalf of the validators of this shardchain.
This forwarding payment is normally considerably smaller than the gas pay-
ment exacted when the message is finally delivered to its recipient, even if
the message has been forwarded several times because of hypercube routing.
Furthermore, as long as a message is kept in the output queue of some shard-
chain, it is part of the shardchain’s global state, so a payment for keeping
global data for a long time may be also collected by special transactions.

37

2.5. Global Shardchain State. “Bag of Cells” Philosophy.

2.4.26. Messages to and from the masterchain. Messages can be sent
directly from any shardchain to the masterchain, and vice versa. However,
gas prices for sending messages to and for processing messages in the master-
chain are quite high, so this ability will be used only when truly necessary—
for example, by the validators to deposit their stakes. In some cases, a
minimal deposit (attached value) for messages sent to the masterchain may
be defined, which is returned only if the message is deemed “valid” by the
receiving party.

Messages cannot be automatically routed through the masterchain. A
message with workchain_id 6= −1 (−1 being the special workchain_id indi-
cating the masterchain) cannot be delivered to the masterchain.

In principle, one can create a message-forwarding smart contract inside
the masterchain, but the price of using it would be prohibitive.

2.4.27. Messages between accounts in the same shardchain. In some
cases, a message is generated by an account belonging to some shardchain,
destined to another account in the same shardchain. For example, this hap-
pens in a new workchain which has not yet split into several shardchains
because the load is manageable.

Such messages might be accumulated in the output queue of the shard-
chain and then processed as incoming messages in subsequent blocks (any
shard is considered a neighbor of itself for this purpose). However, in most
cases it is possible to deliver these messages within the originating block
itself.

In order to achieve this, a partial order is imposed on all transactions
included in a shardchain block, and the transactions (each consisting in the
delivery of a message to some account) are processed respecting this partial
order. In particular, a transaction is allowed to process some output message
of a preceding transaction with respect to this partial order.

In this case, the message body is not copied twice. Instead, the originating
and the processing transactions refer to a shared copy of the message.

2.5 Global Shardchain State. “Bag of Cells” Philosophy.

Now we are ready to describe the global state of a TON blockchain, or at
least of a shardchain of the basic workchain.

We start with a “high-level” or “logical” description, which consists in
saying that the global state is a value of algebraic type ShardchainState.

38

2.5. Global Shardchain State. “Bag of Cells” Philosophy.

2.5.1. Shardchain state as a collection of account-chain states. Ac-
cording to the Infinite Sharding Paradigm (cf. 2.1.2), any shardchain is just
a (temporary) collection of virtual “account-chains”, containing exactly one
account each. This means that, essentially, the global shardchain state must
be a hashmap

ShardchainState := (Account 99K AccountState) (23)

where all account_id appearing as indices of this hashmap must begin with
prefix s, if we are discussing the state of shard (w, s) (cf. 2.1.8).

In practice, we might want to split AccountState into several parts (e.g.,
keep the account output message queue separate to simplify its examination
by the neighboring shardchains), and have several hashmaps (Account 99K
AccountStateParti) inside the ShardchainState. We might also add a small
number of “global” or “integral” parameters to the ShardchainState, (e.g., the
total balance of all accounts belonging to this shard, or the total number of
messages in all output queues).

However, (23) is a good first approximation of what the shardchain global
state looks like, at least from a “logical” (“high-level”) perspective. The formal
description of algebraic types AccountState and ShardchainState can be done
with the aid of a TL-scheme (cf. 2.2.5), to be provided elsewhere.

2.5.2. Splitting and merging shardchain states. Notice that the Infinite
Sharding Paradigm description of the shardchain state (23) shows how this
state should be processed when shards are split or merged. In fact, these
state transformations turn out to be very simple operations with hashmaps.

2.5.3. Account-chain state. The (virtual) account-chain state is just the
state of one account, described by type AccountState. Usually it has all or
some of the fields listed in 2.3.20, depending on the specific constructor used.

2.5.4. Global workchain state. Similarly to (23), we may define the global
workchain state by the same formula, but with account_id ’s allowed to take
any values, not just those belonging to one shard. Remarks similar to those
made in 2.5.1 apply in this case as well: we might want to split this hashmap
into several hashmaps, and we might want to add some “integral” parameters
such as the total balance.

Essentially, the global workchain state must be given by the same type
ShardchainState as the shardchain state, because it is the shardchain state

39

2.5. Global Shardchain State. “Bag of Cells” Philosophy.

we would obtain if all existing shardchains of this workchain suddenly merged
into one.

2.5.5. Low-level perspective: “bag of cells”. There is a “low-level” de-
scription of the account-chain or shardchain state as well, complementary
to the “high-level” description given above. This description is quite impor-
tant, because it turns out to be pretty universal, providing a common basis
for representing, storing, serializing and transferring by network almost all
data used by the TON Blockchain (blocks, shardchain states, smart-contract
storage, Merkle proofs, etc.). At the same time, such a universal “low-level”
description, once understood and implemented, allows us to concentrate our
attention on the “high-level” considerations only.

Recall that the TVM represents values of arbitrary algebraic types (in-
cluding, for instance, ShardchainState of (23)) by means of a tree of TVM
cells, or cells for short (cf. 2.3.14 and 2.2.5).

Any such cell consists of two descriptor bytes, defining certain flags and
values 0 ≤ b ≤ 128, the quantity of raw bytes, and 0 ≤ c ≤ 4, the quantity
of references to other cells. Then b raw bytes and c cell references follow.17

The exact format of cell references depends on the implementation and on
whether the cell is located in RAM, on disk, in a network packet, in a block,
and so on. A useful abstract model consists in imagining that all cells are
kept in content-addressable memory, with the address of a cell equal to its
(sha256) hash. Recall that the (Merkle) hash of a cell is computed exactly
by replacing the references to its child cells by their (recursively computed)
hashes and hashing the resulting byte string.

In this way, if we use cell hashes to reference cells (e.g., inside descriptions
of other cells), the system simplifies somewhat, and the hash of a cell starts
to coincide with the hash of the byte string representing it.

Now we see that any object representable by TVM, the global shardchain
state included, can be represented as a “bag of cells”—i.e., a collection of cells
along with a “root” reference to one of them (e.g., by hash). Notice that
duplicate cells are removed from this description (the “bag of cells” is a set
of cells, not a multiset of cells), so the abstract tree representation might

17One can show that, if Merkle proofs for all data stored in a tree of cells are needed
equally often, one should use cells with b+ch ≈ 2(h+r) to minimize average Merkle proof
size, where h = 32 is the hash size in bytes, and r ≈ 4 is the “byte size” of a cell reference.
In other words, a cell should contain either two references and a few raw bytes, or one
reference and about 36 raw bytes, or no references at all with 72 raw bytes.

40

2.5. Global Shardchain State. “Bag of Cells” Philosophy.

actually become a directed acyclic graph (dag) representation.
One might even keep this state on disk in a B- or B+-tree, containing all

cells in question (maybe with some additional data, such as subtree height or
reference counter), indexed by cell hash. However, a naive implementation
of this idea would result in the state of one smart contract being scattered
among distant parts of the disk file, something we would rather avoid.18

Now we are going to explain in some detail how almost all objects used by
the TON Blockchain can be represented as “bags of cells”, thus demonstrating
the universality of this approach.

2.5.6. Shardchain block as a “bag of cells”. A shardchain block itself
can be also described by an algebraic type, and stored as a “bag of cells”.
Then a naive binary representation of the block may be obtained simply by
concatenating the byte strings representing each of the cells in the “bag of
cells”, in arbitrary order. This representation might be improved and opti-
mized, for instance, by providing a list of offsets of all cells at the beginning
of the block, and replacing hash references to other cells with 32-bit indices
in this list whenever possible. However, one should imagine that a block
is essentially a “bag of cells”, and all other technical details are just minor
optimization and implementation issues.

2.5.7. Update to an object as a “bag of cells”. Imagine that we have an
old version of some object represented as a “bag of cells”, and that we want
to represent a new version of the same object, supposedly not too different
from the previous one. One might simply represent the new state as another
“bag of cells” with its own root, and remove from it all cells occurring in
the old version. The remaining “bag of cells” is essentially an update to the
object. Everybody who has the old version of this object and the update
can compute the new version, simply by uniting the two bags of cells, and
removing the old root (decreasing its reference counter and de-allocating the
cell if the reference counter becomes zero).

2.5.8. Updates to the state of an account. In particular, updates to the
state of an account, or to the global state of a shardchain, or to any hashmap
can be represented using the idea described in 2.5.7. This means that when

18A better implementation would be to keep the state of the smart contract as a serialized
string, if it is small, or in a separate B-tree, if it is large; then the top-level structure
representing the state of a blockchain would be a B-tree, whose leaves are allowed to
contain references to other B-trees.

41

2.5. Global Shardchain State. “Bag of Cells” Philosophy.

we receive a new shardchain block (which is a “bag of cells”), we interpret
this “bag of cells” not just by itself, but by uniting it first with the “bag of
cells” representing the previous state of the shardchain. In this sense each
block may “contain” the whole state of the blockchain.

2.5.9. Updates to a block. Recall that a block itself is a “bag of cells”,
so, if it becomes necessary to edit a block, one can similarly define a “block
update” as a “bag of cells”, interpreted in the presence of the “bag of cells”
which is the previous version of this block. This is roughly the idea behind
the “vertical blocks” discussed in 2.1.17.

2.5.10. Merkle proof as a “bag of cells”. Notice that a (generalized)
Merkle proof—for example, one asserting that x[i] = y starting from a known
value of Hash(x) = h (cf. 2.3.10 and 2.3.15)—may also be represented
as a “bag of cells”. Namely, one simply needs to provide a subset of cells
corresponding to a path from the root of x : Hashmap(n,X) to its desired
leaf with index i : 2n and value y : X. References to children of these cells not
lying on this path will be left “unresolved” in this proof, represented by cell
hashes. One can also provide a simultaneous Merkle proof of, say, x[i] = y
and x[i′] = y′, by including in the “bag of cells” the cells lying on the union of
the two paths from the root of x to leaves corresponding to indices i and i′.

2.5.11. Merkle proofs as query responses from full nodes. In essence,
a full node with a complete copy of a shardchain (or account-chain) state
can provide a Merkle proof when requested by a light node (e.g., a network
node running a light version of the TON Blockchain client), enabling the
receiver to perform some simple queries without external help, using only
the cells provided in this Merkle proof. The light node can send its queries
in a serialized format to the full node, and receive the correct answers with
Merkle proofs—or just the Merkle proofs, because the requester should be
able to compute the answers using only the cells included in the Merkle proof.
This Merkle proof would consist simply of a “bag of cells”, containing only
those cells belonging to the shardchain’s state that have been accessed by
the full node while executing the light node’s query. This approach can be
used in particular for executing “get queries” of smart contracts (cf. 4.3.12).

2.5.12. Augmented update, or state update with Merkle proof of
validity. Recall (cf. 2.5.7) that we can describe the changes in an object
state from an old value x : X to a new value x′ : X by means of an “update”,

42

2.5. Global Shardchain State. “Bag of Cells” Philosophy.

which is simply a “bag of cells”, containing those cells that lie in the subtree
representing new value x′, but not in the subtree representing old value x,
because the receiver is assumed to have a copy of the old value x and all its
cells.

However, if the receiver does not have a full copy of x, but knows only
its (Merkle) hash h = Hash(x), it will not be able to check the validity of
the update (i.e., that all “dangling” cell references in the update do refer to
cells present in the tree of x). One would like to have “verifiable” updates,
augmented by Merkle proofs of existence of all referred cells in the old state.
Then anybody knowing only h = Hash(x) would be able to check the validity
of the update and compute the new h′ = Hash(x′) by itself.

Because our Merkle proofs are “bags of cells” themselves (cf. 2.5.10), one
can construct such an augmented update as a “bag of cells”, containing the
old root of x, some of its descendants along with paths from the root of x to
them, and the new root of x′ and all its descendants that are not part of x.

2.5.13. Account state updates in a shardchain block. In particular,
account state updates in a shardchain block should be augmented as dis-
cussed in 2.5.12. Otherwise, somebody might commit a block containing
an invalid state update, referring to a cell absent in the old state; proving
the invalidity of such a block would be problematic (how is the challenger to
prove that a cell is not part of the previous state?).

Now, if all state updates included in a block are augmented, their validity
is easily checked, and their invalidity is also easily shown as a violation of
the recursive defining property of (generalized) Merkle hashes.

2.5.14. “Everything is a bag of cells” philosophy. Previous considera-
tions show that everything we need to store or transfer, either in the TON
Blockchain or in the network, is representable as a “bag of cells”. This is
an important part of the TON Blockchain design philosophy. Once the “bag
of cells” approach is explained and some “low-level” serializations of “bags of
cells” are defined, one can simply define everything (block format, shardchain
and account state, etc.) on the high level of abstract (dependent) algebraic
data types.

The unifying effect of the “everything is a bag of cells” philosophy consid-
erably simplifies the implementation of seemingly unrelated services; cf. 5.1.9
for an example involving payment channels.

2.5.15. Block “headers” for TON blockchains. Usually, a block in a

43

2.6. Creating and Validating New Blocks

blockchain begins with a small header, containing the hash of the previous
block, its creation time, the Merkle hash of the tree of all transactions con-
tained in the block, and so on. Then the block hash is defined to be the hash
of this small block header. Because the block header ultimately depends on
all data included in the block, one cannot alter the block without changing
its hash.

In the “bag of cells” approach used by the blocks of TON blockchains,
there is no designated block header. Instead, the block hash is defined as the
(Merkle) hash of the root cell of the block. Therefore, the top (root) cell of
the block might be considered a small “header” of this block.

However, the root cell might not contain all the data usually expected
from such a header. Essentially, one wants the header to contain some of the
fields defined in the Block datatype. Normally, these fields will be contained
in several cells, including the root. These are the cells that together constitute
a “Merkle proof” for the values of the fields in question. One might insist
that a block contain these “header cells” in the very beginning, before any
other cells. Then one would need to download only the first several bytes of
a block serialization in order to obtain all of the “header cells”, and to learn
all of the expected fields.

2.6 Creating and Validating New Blocks

The TON Blockchain ultimately consists of shardchain and masterchain
blocks. These blocks must be created, validated and propagated through
the network to all parties concerned, in order for the system to function
smoothly and correctly.

2.6.1. Validators. New blocks are created and validated by special desig-
nated nodes, called validators. Essentially, any node wishing to become a
validator may become one, provided it can deposit a sufficiently large stake
(in TON coins, i.e., Grams; cf. Appendix A) into the masterchain. Valida-
tors obtain some “rewards” for good work, namely, the transaction, storage
and gas fees from all transactions (messages) committed into newly gener-
ated blocks, and some newly minted coins, reflecting the “gratitude” of the
whole community to the validators for keeping the TON Blockchain working.
This income is distributed among all participating validators proportionally
to their stakes.

However, being a validator is a high responsibility. If a validator signs

44

2.6. Creating and Validating New Blocks

an invalid block, it can be punished by losing part or all of its stake, and
by being temporarily or permanently excluded from the set of validators. If
a validator does not participate in creating a block, it does not receive its
share of the reward associated with that block. If a validator abstains from
creating new blocks for a long time, it may lose part of its stake and be
suspended or permanently excluded from the set of validators.

All this means that the validator does not get its money “for nothing”.
Indeed, it must keep track of the states of all or some shardchains (each
validator is responsible for validating and creating new blocks in a certain
subset of shardchains), perform all computations requested by smart con-
tracts in these shardchains, receive updates about other shardchains and so
on. This activity requires considerable disk space, computing power and
network bandwidth.

2.6.2. Validators instead of miners. Recall that the TON Blockchain uses
the Proof-of-Stake approach, instead of the Proof-of-Work approach adopted
by Bitcoin, the current version of Ethereum, and most other cryptocurrencies.
This means that one cannot “mine” a new block by presenting some proof-of-
work (computing a lot of otherwise useless hashes) and obtain some new coins
as a result. Instead, one must become a validator and spend one’s computing
resources to store and process TON Blockchain requests and data. In short,
one must be a validator to mine new coins. In this respect, validators are the
new miners.

However, there are some other ways to earn coins apart from being a
validator.

2.6.3. Nominators and “mining pools”. To become a validator, one
would normally need to buy and install several high-performance servers and
acquire a good Internet connection for them. This is not so expensive as the
ASIC equipment currently required to mine Bitcoins. However, one definitely
cannot mine new TON coins on a home computer, let alone a smartphone.

In the Bitcoin, Ethereum and other Proof-of-Work cryptocurrency mining
communities there is a notion of mining pools, where a lot of nodes, having
insufficient computing power to mine new blocks by themselves, combine
their efforts and share the reward afterwards.

A corresponding notion in the Proof-of-Stake world is that of a nominator.
Essentially, this is a node lending its money to help a validator increase its
stake; the validator then distributes the corresponding share of its reward
(or some previously agreed fraction of it—say, 50%) to the nominator.

45

2.6. Creating and Validating New Blocks

In this way, a nominator can also take part in the “mining” and obtain
some reward proportional to the amount of money it is willing to deposit for
this purpose. It receives only a fraction of the corresponding share of the
validator’s reward, because it provides only the “capital”, but does not need
to buy computing power, storage and network bandwidth.

However, if the validator loses its stake because of invalid behavior, the
nominator loses its share of the stake as well. In this sense the nominator
shares the risk. It must choose its nominated validator wisely, otherwise it
can lose money. In this sense, nominators make a weighted decision and
“vote” for certain validators with their funds.

On the other hand, this nominating or lending system enables one to
become a validator without investing a large amount of money into Grams
(TON coins) first. In other words, it prevents those keeping large amounts
of Grams from monopolizing the supply of validators.

2.6.4. Fishermen: obtaining money by pointing out others’ mis-
takes. Another way to obtain some rewards without being a validator is
by becoming a fisherman. Essentially, any node can become a fisherman by
making a small deposit in the masterchain. Then it can use special mas-
terchain transactions to publish (Merkle) invalidity proofs of some (usually
shardchain) blocks previously signed and published by validators. If other
validators agree with this invalidity proof, the offending validators are pun-
ished (by losing part of their stake), and the fisherman obtains some reward
(a fraction of coins confiscated from the offending validators). Afterwards,
the invalid (shardchain) block must be corrected as outlined in 2.1.17. Cor-
recting invalid masterchain blocks may involve creating “vertical” blocks on
top of previously committed masterchain blocks (cf. 2.1.17); there is no need
to create a fork of the masterchain.

Normally, a fisherman would need to become a full node for at least some
shardchains, and spend some computing resources by running the code of
at least some smart contracts. While a fisherman does not need to have as
much computing power as a validator, we think that a natural candidate
to become a fisherman is a would-be validator that is ready to process new
blocks, but has not yet been elected as a validator (e.g., because of a failure
to deposit a sufficiently large stake).

2.6.5. Collators: obtaining money by suggesting new blocks to val-
idators. Yet another way to obtain some rewards without being a validator
is by becoming a collator. This is a node that prepares and suggests to

46

2.6. Creating and Validating New Blocks

a validator new shardchain block candidates, complemented (collated) with
data taken from the state of this shardchain and from other (usually neigh-
boring) shardchains, along with suitable Merkle proofs. (This is necessary,
for example, when some messages need to be forwarded from neighboring
shardchains.) Then a validator can easily check the proposed block candi-
date for validity, without having to download the complete state of this or
other shardchains.

Because a validator needs to submit new (collated) block candidates to
obtain some (“mining”) rewards, it makes sense to pay some part of the
reward to a collator willing to provide suitable block candidates. In this way,
a validator may free itself from the necessity of watching the state of the
neighboring shardchains, by outsourcing it to a collator.

However, we expect that during the system’s initial deployment phase
there will be no separate designated collators, because all validators will be
able to act as collators for themselves.

2.6.6. Collators or validators: obtaining money for including user
transactions. Users can open micropayment channels to some collators or
validators and pay small amounts of coins in exchange for the inclusion of
their transactions in the shardchain.

2.6.7. Global validator set election. The “global” set of validators is
elected once each month (actually, every 219 masterchain blocks). This set is
determined and universally known one month in advance.

In order to become a validator, a node must transfer some TON coins
(Grams) into the masterchain, and then send them to a special smart contract
as its suggested stake s. Another parameter, sent along with the stake, is l ≥
1, the maximum validating load this node is willing to accept relative to the
minimal possible. There is also a global upper bound (another configurable
parameter) L on l, equal to, say, 10.

Then the global set of validators is elected by this smart contract, simply
by selecting up to T candidates with maximal suggested stakes and publishing
their identities. Originally, the total number of validators is T = 100; we
expect it to grow to 1000 as the load increases. It is a configurable parameter
(cf. 2.1.21).

The actual stake of each validator is computed as follows: If the top T
proposed stakes are s1 ≥ s2 ≥ · · · ≥ sT , the actual stake of i-th validator is
set to s′i := min(si, li · sT). In this way, s′i/s′T ≤ li, so the i-th validator does

47

2.6. Creating and Validating New Blocks

not obtain more than li ≤ L times the load of the weakest validator (because
the load is ultimately proportional to the stake).

Then elected validators may withdraw the unused part of their stake,
si−s′i. Unsuccessful validator candidates may withdraw all of their proposed
stake.

Each validator publishes its public signing key, not necessarily equal to
the public key of the account the stake came from.19

The stakes of the validators are frozen until the end of the period for
which they have been elected, and one month more, in case new disputes
arise (i.e., an invalid block signed by one of these validators is found). After
that, the stake is returned, along with the validator’s share of coins minted
and fees from transactions processed during this time.

2.6.8. Election of validator “task groups”. The whole global set of val-
idators (where each validator is considered present with multiplicity equal to
its stake—otherwise a validator might be tempted to assume several identi-
ties and split its stake among them) is used only to validate new masterchain
blocks. The shardchain blocks are validated only by specially selected sub-
sets of validators, taken from the global set of validators chosen as described
in 2.6.7.

These validator “subsets” or “task groups”, defined for every shard, are
rotated each hour (actually, every 210 masterchain blocks), and they are
known one hour in advance, so that every validator knows which shards it
will need to validate, and can prepare for that (e.g., by downloading missing
shardchain data).

The algorithm used to select validator task groups for each shard (w, s)
is deterministic pseudorandom. It uses pseudorandom numbers embedded
by validators into each masterchain block (generated by a consensus using
threshold signatures) to create a random seed, and then computes for ex-
ample Hash(code(w).code(s).validator_id.rand_seed) for each validator.
Then validators are sorted by the value of this hash, and the first several are
selected, so as to have at least 20/T of the total validator stakes and consist
of at least 5 validators.

This selection could be done by a special smart contract. In that case,
the selection algorithm would easily be upgradable without hard forks by the
voting mechanism mentioned in 2.1.21. All other “constants” mentioned so
far (such as 219, 210, T , 20, and 5) are also configurable parameters.

19It makes sense to generate and use a new key pair for every validator election.

48

2.6. Creating and Validating New Blocks

2.6.9. Rotating priority order on each task group. There is a certain
“priority” order imposed on the members of a shard task group, depending on
the hash of the previous masterchain block and (shardchain) block sequence
number. This order is determined by generating and sorting some hashes as
described above.

When a new shardchain block needs to be generated, the shard task group
validator selected to create this block is normally the first one with respect
to this rotating “priority” order. If it fails to create the block, the second or
third validator may do it. Essentially, all of them may suggest their block
candidates, but the candidate suggested by the validator having the highest
priority should win as the result of Byzantine Fault Tolerant (BFT) consensus
protocol.

2.6.10. Propagation of shardchain block candidates. Because shard-
chain task group membership is known one hour in advance, their members
can use that time to build a dedicated “shard validators multicast overlay net-
work”, using the general mechanisms of the TON Network (cf. 3.3). When
a new shardchain block needs to be generated—normally one or two seconds
after the most recent masterchain block has been propagated—everybody
knows who has the highest priority to generate the next block (cf. 2.6.9).
This validator will create a new collated block candidate, either by itself or
with the aid of a collator (cf. 2.6.5). The validator must check (validate) this
block candidate (especially if it has been prepared by some collator) and sign
it with its (validator) private key. Then the block candidate is propagated
to the remainder of the task group using the prearranged multicast overlay
network (the task group creates its own private overlay network as explained
in 3.3, and then uses a version of the streaming multicast protocol described
in 3.3.15 to propagate block candidates).

A truly BFT way of doing this would be to use a Byzantine multicast
protocol, such as the one used in Honey Badger BFT [11]: encode the block
candidate by an (N, 2N/3)-erasure code, send 1/N of the resulting data
directly to each member of the group, and expect them to multicast directly
their part of the data to all other members of the group.

However, a faster and more straightforward way of doing this (cf. also
3.3.15) is to split the block candidate into a sequence of signed one-kilobyte
blocks (“chunks”), augment their sequence by a Reed–Solomon or a fountain
code (such as the RaptorQ code [9] [14]), and start transmitting chunks to the
neighbors in the “multicast mesh” (i.e., the overlay network), expecting them

49

2.6. Creating and Validating New Blocks

to propagate these chunks further. Once a validator obtains enough chunks
to reconstruct the block candidate from them, it signs a confirmation receipt
and propagates it through its neighbors to the whole of the group. Then
its neighbors stop sending new chunks to it, but may continue to send the
(original) signatures of these chunks, believing that this node can generate the
subsequent chunks by applying the Reed–Solomon or fountain code by itself
(having all data necessary), combine them with signatures, and propagate to
its neighbors that are not yet ready.

If the “multicast mesh” (overlay network) remains connected after remov-
ing all “bad” nodes (recall that up to one-third of nodes are allowed to be
bad in a Byzantine way, i.e., behave in arbitrary malicious fashion), this
algorithm will propagate the block candidate as quickly as possible.

Not only the designated high-priority block creator may multicast its
block candidate to the whole of the group. The second and third validator
by priority may start multicasting their block candidates, either immediately
or after failing to receive a block candidate from the top priority validator.
However, normally only the block candidate with maximal priority will be
signed by all (actually, by at least two-thirds of the task group) validators
and committed as a new shardchain block.

2.6.11. Validation of block candidates. Once a block candidate is re-
ceived by a validator and the signature of its originating validator is checked,
the receiving validator checks the validity of this block candidate, by per-
forming all transactions in it and checking that their result coincides with
the one claimed. All messages imported from other blockchains must be sup-
ported by suitable Merkle proofs in the collated data, otherwise the block
candidate is deemed invalid (and, if a proof of this is committed to the mas-
terchain, the validators having already signed this block candidate may be
punished). On the other hand, if the block candidate is found to be valid, the
receiving validator signs it and propagates its signature to other validators in
the group, either through the “mesh multicast network”, or by direct network
messages.

We would like to emphasize that a validator does not need access to the
states of this or neighboring shardchains in order to check the validity of
a (collated) block candidate.20 This allows the validation to proceed very

20A possible exception is the state of output queues of the neighboring shardchains,
needed to guarantee the message ordering requirements described in 2.4.21, because the
size of Merkle proofs might become prohibitive in this case.

50

2.6. Creating and Validating New Blocks

quickly (without disk accesses), and lightens the computational and storage
burden on the validators (especially if they are willing to accept the services
of outside collators for creating block candidates).

2.6.12. Election of the next block candidate. Once a block candidate
collects at least two-thirds (by stake) of the validity signatures of validators
in the task group, it is eligible to be committed as the next shardchain block.
A BFT protocol is run to achieve consensus on the block candidate chosen
(there may be more than one proposed), with all “good” validators preferring
the block candidate with the highest priority for this round. As a result of
running this protocol, the block is augmented by signatures of at least two-
thirds of the validators (by stake). These signatures testify not only to the
validity of the block in question, but also to its being elected by the BFT
protocol. After that, the block (without collated data) is combined with
these signatures, serialized in a deterministic way, and propagated through
the network to all parties concerned.

2.6.13. Validators must keep the blocks they have signed. During
their membership in the task group and for at least one hour (or rather
210 blocks) afterward, the validators are expected to keep the blocks they
have signed and committed. The failure to provide a signed block to other
validators may be punished.

2.6.14. Propagating the headers and signatures of new shardchain
blocks to all validators. Validators propagate the headers and signatures
of newly-generated shardchain blocks to the global set of validators, using a
multicast mesh network similar to the one created for each task group.

2.6.15. Generation of new masterchain blocks. After all (or almost all)
new shardchain blocks have been generated, a new masterchain block may
be generated. The procedure is essentially the same as for shardchain blocks
(cf. 2.6.12), with the difference that all validators (or at least two-thirds of
them) must participate in this process. Because the headers and signatures of
new shardchain blocks are propagated to all validators, hashes of the newest
blocks in each shardchain can and must be included in the new masterchain
block. Once these hashes are committed into the masterchain block, outside
observers and other shardchains may consider the new shardchain blocks
committed and immutable (cf. 2.1.13.

51

2.6. Creating and Validating New Blocks

2.6.16. Validators must keep the state of masterchain. A noteworthy
difference between the masterchain and the shardchains is that all validators
are expected to keep track of the masterchain state, without relying on col-
lated data. This is important because the knowledge of validator task groups
is derived from the masterchain state.

2.6.17. Shardchain blocks are generated and propagated in parallel.
Normally, each validator is a member of several shardchain task groups; their
quantity (hence the load on the validator) is approximately proportional to
the validator’s stake. This means that the validator runs several instances of
new shardchain block generation protocol in parallel.

2.6.18. Mitigation of block retention attacks. Because the total set of
validators inserts a new shardchain block’s hash into the masterchain after
having seen only its header and signatures, there is a small probability that
the validators that have generated this block will conspire and try to avoid
publishing the new block in its entirety. This would result in the inability
of validators of neighboring shardchains to create new blocks, because they
must know at least the output message queue of the new block, once its hash
has been committed into the masterchain.

In order to mitigate this, the new block must collect signatures from some
other validators (e.g., two-thirds of the union of task groups of neighboring
shardchains) testifying that these validators do have copies of this block and
are willing to send them to any other validators if required. Only after
these signatures are presented may the new block’s hash be included in the
masterchain.

2.6.19. Masterchain blocks are generated later than shardchain
blocks. Masterchain blocks are generated approximately once every five
seconds, as are shardchain blocks. However, while the generation of new
blocks in all shardchains runs essentially at the same time (normally trig-
gered by the release of a new masterchain block), the generation of new
masterchain blocks is deliberately delayed, to allow the inclusion of hashes
of newly-generated shardchain blocks in the masterchain.

2.6.20. Slow validators may receive lower rewards. If a validator
is “slow”, it may fail to validate new block candidates, and two-thirds of
the signatures required to commit the new block may be gathered without
its participation. In this case, it will receive a lower share of the reward
associated with this block.

52

2.6. Creating and Validating New Blocks

This provides an incentive for the validators to optimize their hardware,
software, and network connection in order to process user transactions as fast
as possible.

However, if a validator fails to sign a block before it is committed, its
signature may be included in one of the next blocks, and then a part of the
reward (exponentially decreasing depending on how many blocks have been
generated since—e.g., 0.9k if the validator is k blocks late) will be still given
to this validator.

2.6.21. “Depth” of validator signatures. Normally, when a validator
signs a block, the signature testifies only to the relative validity of a block:
this block is valid provided all previous blocks in this and other shardchains
are valid. The validator cannot be punished for taking for granted invalid
data committed into previous blocks.

However, the validator signature of a block has an integer parameter
called “depth”. If it is non-zero, it means that the validator asserts the
(relative) validity of the specified number of previous blocks as well. This is
a way for “slow” or “temporarily offline” validators to catch up and sign some
of the blocks that have been committed without their signatures. Then some
part of the block reward will still be given to them (cf. 2.6.20).

2.6.22. Validators are responsible for relative validity of signed
shardchain blocks; absolute validity follows. We would like to empha-
size once again that a validator’s signature on a shardchain block B testifies
to only the relative validity of that block (or maybe of d previous blocks
as well, if the signature has “depth” d, cf. 2.6.21; but this does not affect
the following discussion much). In other words, the validator asserts that
the next state s′ of the shardchain is obtained from the previous state s by
applying the block evaluation function ev_block described in 2.2.6:

s′ = ev_block(B)(s) (24)

In this way, the validator that signed block B cannot be punished if the
original state s turns out to be “incorrect” (e.g., because of the invalidity of
one of the previous blocks). A fisherman (cf. 2.6.4) should complain only if it
finds a block that is relatively invalid. The PoS system as a whole endeavors
to make every block relatively valid, not recursively (or absolutely) valid.
Notice, however, that if all blocks in a blockchain are relatively valid, then all
of them and the blockchain as a whole are absolutely valid; this statement is

53

2.6. Creating and Validating New Blocks

easily shown using mathematical induction on the length of the blockchain.
In this way, easily verifiable assertions of relative validity of blocks together
demonstrate the much stronger absolute validity of the whole blockchain.

Note that by signing a block B the validator asserts that the block is
valid given the original state s (i.e., that the result of (24) is not the value ⊥
indicating that the next state cannot be computed). In this way, the validator
must perform minimal formal checks of the cells of the original state that are
accessed during the evaluation of (24).

For example, imagine that the cell expected to contain the original bal-
ance of an account accessed from a transaction committed into a block turns
out to have zero raw bytes instead of the expected 8 or 16. Then the original
balance simply cannot be retrieved from the cell, and an “unhandled excep-
tion” happens while trying to process the block. In this case, the validator
should not sign such a block on pain of being punished.

2.6.23. Signing masterchain blocks. The situation with the masterchain
blocks is somewhat different: by signing a masterchain block, the valida-
tor asserts not only its relative validity, but also the relative validity of all
preceding blocks up to the very first block when this validator assumed its
responsibility (but not further back).

2.6.24. The total number of validators. The upper limit T for the total
number of validators to be elected (cf. 2.6.7) cannot become, in the system
described so far, more than, say, several hundred or a thousand, because all
validators are expected to participate in a BFT consensus protocol to cre-
ate each new masterchain block, and it is not clear whether such protocols
can scale to thousands of participants. Even more importantly, masterchain
blocks must collect the signatures of at least two-thirds of all the validators
(by stake), and these signatures must be included in the new block (other-
wise all other nodes in the system would have no reason to trust the new
block without validating it by themselves). If more than, say, one thousand
validator signatures would have to be included in each masterchain block,
this would imply more data in each masterchain block, to be stored by all
full nodes and propagated through the network, and more processing power
spent to check these signatures (in a PoS system, full nodes do not need to
validate blocks by themselves, but they need to check the validators’ signa-
tures instead).

While limiting T to a thousand validators seems more than sufficient for
the first phase of the deployment of the TON Blockchain, a provision must

54

2.6. Creating and Validating New Blocks

be made for future growth, when the total number of shardchains becomes
so large that several hundred validators will not suffice to process all of
them. To this end, we introduce an additional configurable parameter T ′ ≤ T
(originally equal to T), and only the top T ′ elected validators (by stake) are
expected to create and sign new masterchain blocks.

2.6.25. Decentralization of the system. One might suspect that a Proof-
of-Stake system such as the TON Blockchain, relying on T ≈ 1000 validators
to create all shardchain and masterchain blocks, is bound to become “too
centralized”, as opposed to conventional Proof-of-Work blockchains like Bit-
coin or Ethereum, where everybody (in principle) might mine a new block,
without an explicit upper limit on the total number of miners.

However, popular Proof-of-Work blockchains, such as Bitcoin and Ether-
eum, currently require vast amounts of computing power (high “hash rates”)
to mine new blocks with non-negligible probability of success. Thus, the
mining of new blocks tends to be concentrated in the hands of several large
players, who invest huge amounts money into datacenters filled with custom-
designed hardware optimized for mining; and in the hands of several large
mining pools, which concentrate and coordinate the efforts of larger groups
of people who are not able to provide a sufficient “hash rate” by themselves.

Therefore, as of 2017, more than 75% of new Ethereum or Bitcoin blocks
are produced by less than ten miners. In fact, the two largest Ethereum
mining pools produce together more than half of all new blocks! Clearly,
such a system is much more centralized than one relying on T ≈ 1000 nodes
to produce new blocks.

One might also note that the investment required to become a TON
Blockchain validator—i.e., to buy the hardware (say, several high-performance
servers) and the stake (which can be easily collected through a pool of nom-
inators if necessary; cf. 2.6.3)—is much lower than that required to become
a successful stand-alone Bitcoin or Ethereum miner. In fact, the parame-
ter L of 2.6.7 will force nominators not to join the largest “mining pool”
(i.e., the validator that has amassed the largest stake), but rather to look
for smaller validators currently accepting funds from nominators, or even to
create new validators, because this would allow a higher proportion s′i/si of
the validator’s—and by extension also the nominator’s—stake to be used,
hence yielding larger rewards from mining. In this way, the TON Proof-of-
Stake system actually encourages decentralization (creating and using more
validators) and punishes centralization.

55

2.6. Creating and Validating New Blocks

2.6.26. Relative reliability of a block. The (relative) reliability of a block
is simply the total stake of all validators that have signed this block. In other
words, this is the amount of money certain actors would lose if this block
turns out to be invalid. If one is concerned with transactions transferring
value lower than the reliability of the block, one can consider them to be safe
enough. In this sense, the relative reliability is a measure of trust an outside
observer can have in a particular block.

Note that we speak of the relative reliability of a block, because it is a
guarantee that the block is valid provided the previous block and all other
shardchains’ blocks referred to are valid (cf. 2.6.22).

The relative reliability of a block can grow after it is committed—for
example, when belated validators’ signatures are added (cf. 2.6.21). On the
other hand, if one of these validators loses part or all of its stake because
of its misbehavior related to some other blocks, the relative reliability of a
block may decrease.

2.6.27. “Strengthening” the blockchain. It is important to provide in-
centives for validators to increase the relative reliability of blocks as much as
possible. One way of doing this is by allocating a small reward to validators
for adding signatures to blocks of other shardchains. Even “would-be” valida-
tors, who have deposited a stake insufficient to get into the top T validators
by stake and to be included in the global set of validators (cf. 2.6.7), might
participate in this activity (if they agree to keep their stake frozen instead
of withdrawing it after having lost the election). Such would-be validators
might double as fishermen (cf. 2.6.4): if they have to check the validity of
certain blocks anyway, they might as well opt to report invalid blocks and
collect associated rewards.

2.6.28. Recursive reliability of a block. One can also define the recursive
reliability of a block to be the minimum of its relative reliability and the
recursive reliabilities of all blocks it refers to (i.e., the masterchain block, the
previous shardchain block, and some blocks of neighboring shardchains). In
other words, if the block turns out to be invalid, either because it is invalid by
itself or because one of the blocks it depends on is invalid, then at least this
amount of money would be lost by someone. If one is truly unsure whether
to trust a specific transaction in a block, one should compute the recursive
reliability of this block, not just the relative one.

It does not make sense to go too far back when computing recursive
reliability, because, if we look too far back, we will see blocks signed by

56

2.7. Splitting and Merging Shardchains

validators whose stakes have already been unfrozen and withdrawn. In any
case, we do not allow the validators to automatically reconsider blocks that
are that old (i.e., created more than two months ago, if current values of
configurable parameters are used), and create forks starting from them or
correct them with the aid of “vertical blockchains” (cf. 2.1.17), even if they
turn out to be invalid. We assume that a period of two months provides
ample opportunities for detecting and reporting any invalid blocks, so that
if a block is not challenged during this period, it is unlikely to be challenged
at all.

2.6.29. Consequence of Proof-of-Stake for light nodes. An important
consequence of the Proof-of-Stake approach used by the TON Blockchain is
that a light node (running light client software) for the TON Blockchain does
not need to download the “headers” of all shardchain or even masterchain
blocks in order to be able to check by itself the validity of Merkle proofs
provided to it by full nodes as answers to its queries.

Indeed, because the most recent shardchain block hashes are included in
the masterchain blocks, a full node can easily provide a Merkle proof that a
given shardchain block is valid starting from a known hash of a masterchain
block. Next, the light node needs to know only the very first block of the
masterchain (where the very first set of validators is announced), which (or
at least the hash of which) might be built-in into the client software, and
only one masterchain block approximately every month afterwards, where
newly-elected validator sets are announced, because this block will have been
signed by the previous set of validators. Starting from that, it can obtain the
several most recent masterchain blocks, or at least their headers and validator
signatures, and use them as a base for checking Merkle proofs provided by
full nodes.

2.7 Splitting and Merging Shardchains

One of the most characteristic and unique features of the TON Blockchain is
its ability to automatically split a shardchain in two when the load becomes
too high, and merge them back if the load subsides (cf. 2.1.10). We must
discuss it in some detail because of its uniqueness and its importance to the
scalability of the whole project.

2.7.1. Shard configuration. Recall that, at any given moment of time,
each workchain w is split into one or several shardchains (w, s) (cf. 2.1.8).

57

2.7. Splitting and Merging Shardchains

These shardchains may be represented by leaves of a binary tree, with root
(w, ∅), and each non-leaf node (w, s) having children (w, s.0) and (w, s.1).
In this way, every account belonging to workchain w is assigned to exactly
one shard, and everybody who knows the current shardchain configuration
can determine the shard (w, s) containing account account_id : it is the only
shard with binary string s being a prefix of account_id .

The shard configuration—i.e., this shard binary tree, or the collection
of all active (w, s) for a given w (corresponding to the leaves of the shard
binary tree)—is part of the masterchain state and is available to everybody
who keeps track of the masterchain.21

2.7.2. Most recent shard configuration and state. Recall that hashes
of the most recent shardchain blocks are included in each masterchain block.
These hashes are organized in a shard binary tree (actually, a collection of
trees, one for each workchain). In this way, each masterchain block contains
the most recent shard configuration.

2.7.3. Announcing and performing changes in the shard configura-
tion. The shard configuration may be changed in two ways: either a shard
(w, s) can be split into two shards (w, s.0) and (w, s.1), or two “sibling” shards
(w, s.0) and (w, s.1) can be merged into one shard (w, s).

These split/merge operations are announced several (e.g., 26; this is a
configurable parameter) blocks in advance, first in the “headers” of the cor-
responding shardchain blocks, and then in the masterchain block that refers
to these shardchain blocks. This advance announcement is needed for all
parties concerned to prepare for the planned change (e.g., build an overlay
multicast network to distribute new blocks of the newly-created shardchains,
as discussed in 3.3). Then the change is committed, first into the (header of
the) shardchain block (in case of a split; for a merge, blocks of both shard-
chains should commit the change), and then propagated to the masterchain
block. In this way, the masterchain block defines not only the most recent
shard configuration before its creation, but also the next immediate shard
configuration.

2.7.4. Validator task groups for new shardchains. Recall that each
shard, i.e., each shardchain, normally is assigned a subset of validators (a
validator task group) dedicated to creating and validating new blocks in the

21Actually, the shard configuration is completely determined by the last masterchain
block; this simplifies getting access to the shard configuration.

58

2.7. Splitting and Merging Shardchains

corresponding shardchain (cf. 2.6.8). These task groups are elected for some
period of time (approximately one hour) and are known some time in advance
(also approximately one hour), and are immutable during this period.22

However, the actual shard configuration may change during this period
because of split/merge operations. One must assign task groups to newly
created shards. This is done as follows:

Notice that any active shard (w, s) will either be a descendant of some
uniquely determined original shard (w, s′), meaning that s′ is a prefix of s,
or it will be the root of a subtree of original shards (w, s′), where s will be
a prefix of every s′. In the first case, we simply take the task group of the
original shard (w, s′) to double as the task group of the new shard (w, s). In
the latter case, the task group of the new shard (w, s) will be the union of
task groups of all original shards (w, s′) that are descendants of (w, s) in the
shard tree.

In this way, every active shard (w, s) gets assigned a well-defined subset
of validators (task group). When a shard is split, both children inherit the
whole of the task group from the original shard. When two shards are merged,
their task groups are also merged.

Anyone who keeps track of the masterchain state can compute validator
task groups for each of the active shards.

2.7.5. Limit on split/merge operations during the period of respon-
sibility of original task groups. Ultimately, the new shard configuration
will be taken into account, and new dedicated validator subsets (task groups)
will automatically be assigned to each shard. Before that happens, one must
impose a certain limit on split/merge operations; otherwise, an original task
group may end up validating 2k shardchains for a large k at the same time,
if the original shard quickly splits into 2k new shards.

This is achieved by imposing limits on how far the active shard configu-
ration may be removed from the original shard configuration (the one used
to select validator task groups currently in charge). For example, one might
require that the distance in the shard tree from an active shard (w, s) to an
original shard (w, s′) must not exceed 3, if s′ is a predecessor of s (i.e., s′ is a
prefix of binary string s), and must not exceed 2, if s′ is a successor of s (i.e.,
s is a prefix of s′). Otherwise, the split or merge operation is not permitted.

22Unless some validators are temporarily or permanently banned because of signing
invalid blocks—then they are automatically excluded from all task groups.

59

2.7. Splitting and Merging Shardchains

Roughly speaking, one is imposing a limit on the number of times a
shard can be split (e.g., three) or merged (e.g., two) during the period of
responsibility of a given collection of validator task groups. Apart from
that, after a shard has been created by merging or splitting, it cannot be
reconfigured for some period of time (some number of blocks).

2.7.6. Determining the necessity of split operations. The split oper-
ation for a shardchain is triggered by certain formal conditions (e.g., if for
64 consecutive blocks the shardchain blocks are at least 90% full). These
conditions are monitored by the shardchain task group. If they are met,
first a “split preparation” flag is included in the header of a new shardchain
block (and propagated to the masterchain block referring to this shardchain
block). Then, several blocks afterwards, the “split commit” flag is included in
the header of the shardchain block (and propagated to the next masterchain
block).

2.7.7. Performing split operations. After the “split commit” flag is in-
cluded in a block B of shardchain (w, s), there cannot be a subsequent block
B′ in that shardchain. Instead, two blocks B′0 and B′1 of shardchains (w, s.0)
and (w, s.1), respectively, will be created, both referring to block B as their
previous block (and both of them will indicate by a flag in the header that the
shard has been just split). The next masterchain block will contain hashes
of blocks B′0 and B′1 of the new shardchains; it is not allowed to contain the
hash of a new block B′ of shardchain (w, s), because a “split commit” event
has already been committed into the previous masterchain block.

Notice that both new shardchains will be validated by the same validator
task group as the old one, so they will automatically have a copy of their
state. The state splitting operation itself is quite simple from the perspective
of the Infinite Sharding Paradigm (cf. 2.5.2).

2.7.8. Determining the necessity of merge operations. The necessity
of shard merge operations is also detected by certain formal conditions (e.g.,
if for 64 consecutive blocks the sum of the sizes of the two blocks of sibling
shardchains does not exceed 60% of maximal block size). These formal con-
ditions should also take into account the total gas spent by these blocks and
compare it to the current block gas limit, otherwise the blocks may happen
to be small because there are some computation-intensive transactions that
prevent the inclusion of more transactions.

These conditions are monitored by validator task groups of both sibling

60

2.8. Classification of Blockchain Projects

shards (w, s.0) and (w, s.1). Notice that siblings are necessarily neighbors
with respect to hypercube routing (cf. 2.4.19), so validators from the task
group of any shard will be monitoring the sibling shard to some extent any-
ways.

When these conditions are met, either one of the validator subgroups can
suggest to the other that they merge by sending a special message. Then
they combine into a provisional “merged task group”, with combined mem-
bership, capable of running BFT consensus algorithms and of propagating
block updates and block candidates if necessary.

If they reach consensus on the necessity and readiness of merging, “merge
prepare” flags are committed into the headers of some blocks of each shard-
chain, along with the signatures of at least two-thirds of the validators of
the sibling’s task group (and are propagated to the next masterchain blocks,
so that everybody can get ready for the imminent reconfiguration). How-
ever, they continue to create separate shardchain blocks for some predefined
number of blocks.

2.7.9. Performing merge operations. After that, when the validators
from the union of the two original task groups are ready to become validators
for the merged shardchain (this might involve a state transfer from the sibling
shardchain and a state merge operation), they commit a “merge commit”
flag in the headers of blocks of their shardchain (this event is propagated
to the next masterchain blocks), and stop creating new blocks in separate
shardchains (once the merge commit flag appears, creating blocks in separate
shardchains is forbidden). Instead, a merged shardchain block is created (by
the union of the two original task groups), referring to both of its “preceding
blocks” in its “header”. This is reflected in the next masterchain block, which
will contain the hash of the newly created block of the merged shardchain.
After that, the merged task group continues creating blocks in the merged
shardchain.

2.8 Classification of Blockchain Projects

We will conclude our brief discussion of the TON Blockchain by comparing it
with existing and proposed blockchain projects. Before doing this, however,
we must introduce a sufficiently general classification of blockchain projects.
The comparison of particular blockchain projects, based on this classification,
is postponed until 2.9.

61

2.8. Classification of Blockchain Projects

2.8.1. Classification of blockchain projects. As a first step, we suggest
some classification criteria for blockchains (i.e., for blockchain projects). Any
such classification is somewhat incomplete and superficial, because it must
ignore some of the most specific and unique features of the projects under
consideration. However, we feel that this is a necessary first step in provid-
ing at least a very rough and approximate map of the blockchain projects
territory.

The list of criteria we consider is the following:

• Single-blockchain vs. multi-blockchain architecture (cf. 2.8.2)

• Consensus algorithm: Proof-of-Stake vs. Proof-of-Work (cf. 2.8.3)

• For Proof-of-Stake systems, the exact block generation, validation and
consensus algorithm used (the two principal options are DPOS vs. BFT;
cf. 2.8.4)

• Support for “arbitrary” (Turing-complete) smart contracts (cf. 2.8.6)

Multi-blockchain systems have additional classification criteria (cf. 2.8.7):

• Type and rules of member blockchains: homogeneous, heterogeneous
(cf. 2.8.8), mixed (cf. 2.8.9). Confederations (cf. 2.8.10).

• Absence or presence of a masterchain, internal or external (cf. 2.8.11)

• Native support for sharding (cf. 2.8.12). Static or dynamic sharding
(cf. 2.8.13).

• Interaction between member blockchains: loosely-coupled and tightly-
coupled systems (cf. 2.8.14)

2.8.2. Single-blockchain vs. multi-blockchain projects. The first clas-
sification criterion is the quantity of blockchains in the system. The oldest
and simplest projects consist of a single blockchain (“singlechain projects”
for short); more sophisticated projects use (or, rather, plan to use) multiple
blockchains (“multichain projects”).

Singlechain projects are generally simpler and better tested; they have
withstood the test of time. Their main drawback is low performance, or at
least transaction throughput, which is on the level of ten (Bitcoin) to less

62

2.8. Classification of Blockchain Projects

than one hundred23 (Ethereum) transactions per second for general-purpose
systems. Some specialized systems (such as Bitshares) are capable of process-
ing tens of thousands of specialized transactions per second, at the expense
of requiring the blockchain state to fit into memory, and limiting the pro-
cessing to a predefined special set of transactions, which are then executed
by highly-optimized code written in languages like C++ (no VMs here).

Multichain projects promise the scalability everybody craves. They may
support larger total states and more transactions per second, at the expense
of making the project much more complex, and its implementation more chal-
lenging. As a result, there are few multichain projects already running, but
most proposed projects are multichain. We believe that the future belongs
to multichain projects.

2.8.3. Creating and validating blocks: Proof-of-Work vs. Proof-of-
Stake. Another important distinction is the algorithm and protocol used
to create and propagate new blocks, check their validity, and select one of
several forks if they appear.

The two most common paradigms are Proof-of-Work (PoW) and Proof-of-
Stake (PoS). The Proof-of-Work approach usually allows any node to create
(“mine”) a new block (and obtain some reward associated with mining a
block) if it is lucky enough to solve an otherwise useless computational prob-
lem (usually involving the computation of a large amount of hashes) before
other competitors manage to do this. In the case of forks (for example, if two
nodes publish two otherwise valid but different blocks to follow the previous
one) the longest fork wins. In this way, the guarantee of immutability of the
blockchain is based on the amount of work (computational resources) spent
to generate the blockchain: anybody who would like to create a fork of this
blockchain would need to re-do this work to create alternative versions of the
already committed blocks. For this, one would need to control more than
50% of the total computing power spent creating new blocks, otherwise the
alternative fork will have exponentially low chances of becoming the longest.

The Proof-of-Stake approach is based on large stakes (nominated in cryp-
tocurrency) made by some special nodes (validators) to assert that they have
checked (validated) some blocks and have found them correct. Validators
sign blocks, and receive some small rewards for this; however, if a validator
is ever caught signing an incorrect block, and a proof of this is presented,

23More like 15, for the time being. However, some upgrades are being planned to make
Ethereum transaction throughput several times larger.

63

2.8. Classification of Blockchain Projects

part or all of its stake is forfeit. In this way, the guarantee of validity and
immutability of the blockchain is given by the total volume of stakes put by
validators on the validity of the blockchain.

The Proof-of-Stake approach is more natural in the respect that it incen-
tivizes the validators (which replace PoW miners) to perform useful compu-
tation (needed to check or create new blocks, in particular, by performing all
transactions listed in a block) instead of computing otherwise useless hashes.
In this way, validators would purchase hardware that is better adapted to
processing user transactions, in order to receive rewards associated with these
transactions, which seems quite a useful investment from the perspective of
the system as a whole.

However, Proof-of-Stake systems are somewhat more challenging to im-
plement, because one must provide for many rare but possible conditions.
For example, some malicious validators might conspire to disrupt the system
to extract some profit (e.g., by altering their own cryptocurrency balances).
This leads to some non-trivial game-theoretic problems.

In short, Proof-of-Stake is more natural and more promising, especially
for multichain projects (because Proof-of-Work would require prohibitive
amounts of computational resources if there are many blockchains), but must
be more carefully thought out and implemented. Most currently running
blockchain projects, especially the oldest ones (such as Bitcoin and at least
the original Ethereum), use Proof-of-Work.

2.8.4. Variants of Proof-of-Stake. DPOS vs. BFT. While Proof-of-
Work algorithms are very similar to each other and differ mostly in the hash
functions that must be computed for mining new blocks, there are more
possibilities for Proof-of-Stake algorithms. They merit a sub-classification of
their own.

Essentially, one must answer the following questions about a Proof-of-
Stake algorithm:

• Who can produce (“mine”) a new block—any full node, or only a mem-
ber of a (relatively) small subset of validators? (Most PoS systems
require new blocks to be generated and signed by one of several desig-
nated validators.)

• Do validators guarantee the validity of the blocks by their signatures, or
are all full nodes expected to validate all blocks by themselves? (Scal-
able PoS systems must rely on validator signatures instead of requiring

64

2.8. Classification of Blockchain Projects

all nodes to validate all blocks of all blockchains.)

• Is there a designated producer for the next blockchain block, known in
advance, such that nobody else can produce that block instead?

• Is a newly-created block originally signed by only one validator (its
producer), or must it collect a majority of validator signatures from
the very beginning?

While there seem to be 24 possible classes of PoS algorithms depending on
the answers to these questions, the distinction in practice boils down to two
major approaches to PoS. In fact, most modern PoS algorithms, designed to
be used in scalable multi-chain systems, answer the first two questions in the
same fashion: only validators can produce new blocks, and they guarantee
block validity without requiring all full nodes to check the validity of all
blocks by themselves.

As to the two last questions, their answers turn out to be highly corre-
lated, leaving essentially only two basic options:

• Delegated Proof-of-Stake (DPOS): There is a universally known desig-
nated producer for every block; no one else can produce that block; the
new block is originally signed only by its producing validator.

• Byzantine Fault Tolerant (BFT) PoS algorithms: There is a known
subset of validators, any of which can suggest a new block; the choice
of the actual next block among several suggested candidates, which
must be validated and signed by a majority of validators before being
released to the other nodes, is achieved by a version of Byzantine Fault
Tolerant consensus protocol.

2.8.5. Comparison of DPOS and BFT PoS. The BFT approach has
the advantage that a newly-produced block has from the very beginning the
signatures of a majority of validators testifying to its validity. Another advan-
tage is that, if a majority of validators executes the BFT consensus protocol
correctly, no forks can appear at all. On the other hand, BFT algorithms
tend to be quite convoluted and require more time for the subset of valida-
tors to reach consensus. Therefore, blocks cannot be generated too often.
This is why we expect the TON Blockchain (which is a BFT project from
the perspective of this classification) to produce a block only once every five
seconds. In practice, this interval might be decreased to 2–3 seconds (though

65

2.8. Classification of Blockchain Projects

we do not promise this), but not further, if validators are spread across the
globe.

The DPOS algorithm has the advantage of being quite simple and straight-
forward. It can generate new blocks quite often—say, once every two seconds,
or maybe even once every second,24 because of its reliance on designated block
producers known in advance.

However, DPOS requires all nodes—or at least all validators—to validate
all blocks received, because a validator producing and signing a new block
confirms not only the relative validity of this block, but also the validity of
the previous block it refers to, and all the blocks further back in the chain
(maybe up to the beginning of the period of responsibility of the current
subset of validators). There is a predetermined order on the current subset
of validators, so that for each block there is a designated producer (i.e.,
validator expected to generate that block); these designated producers are
rotated in a round-robin fashion. In this way, a block is at first signed only by
its producing validator; then, when the next block is mined, and its producer
chooses to refer to this block and not to one of its predecessors (otherwise
its block would lie in a shorter chain, which might lose the “longest fork”
competition in the future), the signature of the next block is essentially an
additional signature on the previous block as well. In this way, a new block
gradually collects the signatures of more validators—say, twenty signatures
in the time needed to generate the next twenty blocks. A full node will
either need to wait for these twenty signatures, or validate the block by
itself, starting from a sufficiently confirmed block (say, twenty blocks back),
which might be not so easy.

The obvious disadvantage of the DPOS algorithm is that a new block
(and transactions committed into it) achieves the same level of trust (“re-
cursive reliability” as discussed in 2.6.28) only after twenty more blocks are
mined, compared to the BFT algorithms, which deliver this level of trust
(say, twenty signatures) immediately. Another disadvantage is that DPOS
uses the “longest fork wins” approach for switching to other forks; this makes
forks quite probable if at least some producers fail to produce subsequent
blocks after the one we are interested in (or we fail to observe these blocks
because of a network partition or a sophisticated attack).

We believe that the BFT approach, while more sophisticated to imple-
24Some people even claim DPOS block generation times of half a second, which does

not seem realistic if validators are scattered across several continents.

66

2.8. Classification of Blockchain Projects

ment and requiring longer time intervals between blocks than DPOS, is bet-
ter adapted to “tightly-coupled” (cf. 2.8.14) multichain systems, because
other blockchains can start acting almost immediately after seeing a com-
mitted transaction (e.g., generating a message intended for them) in a new
block, without waiting for twenty confirmations of validity (i.e., the next
twenty blocks), or waiting for the next six blocks to be sure that no forks
appear and verifying the new block by themselves (verifying blocks of other
blockchains may become prohibitive in a scalable multi-chain system). Thus
they can achieve scalability while preserving high reliability and availability
(cf. 2.8.12).

On the other hand, DPOS might be a good choice for a “loosely-coupled”
multi-chain system, where fast interaction between blockchains is not re-
quired – e.g., if each blockchain (“workchain”) represents a separate dis-
tributed exchange, and inter-blockchain interaction is limited to rare transfers
of tokens from one workchain into another (or, rather, trading one altcoin
residing in one workchain for another at a rate approaching 1 : 1). This
is what is actually done in the BitShares project, which uses DPOS quite
successfully.

To summarize, while DPOS can generate new blocks and include trans-
actions into them faster (with smaller intervals between blocks), these trans-
actions reach the level of trust required to use them in other blockchains and
off-chain applications as “committed” and “immutable” much more slowly
than in the BFT systems—say, in thirty seconds25 instead of five. Faster
transaction inclusion does not mean faster transaction commitment. This
could become a huge problem if fast inter-blockchain interaction is required.
In that case, one must abandon DPOS and opt for BFT PoS instead.

2.8.6. Support for Turing-complete code in transactions, i.e., es-
sentially arbitrary smart contracts. Blockchain projects normally col-
lect some transactions in their blocks, which alter the blockchain state in
a way deemed useful (e.g., transfer some amount of cryptocurrency from
one account to another). Some blockchain projects might allow only some
specific predefined types of transactions (such as value transfers from one ac-
count to another, provided correct signatures are presented). Others might
support some limited form of scripting in the transactions. Finally, some

25For instance, EOS, one of the best DPOS projects proposed up to this date, promises
a 45-second confirmation and inter-blockchain interaction delay (cf. [5], “Transaction Con-
firmation” and “Latency of Interchain Communication” sections).

67

2.8. Classification of Blockchain Projects

blockchains support the execution of arbitrarily complex code in transactions,
enabling the system (at least in principle) to support arbitrary applications,
provided the performance of the system permits. This is usually associated
with “Turing-complete virtual machines and scripting languages” (meaning
that any program that can be written in any other computing language may
be re-written to be performed inside the blockchain), and “smart contracts”
(which are programs residing in the blockchain).

Of course, support for arbitrary smart contracts makes the system truly
flexible. On the other hand, this flexibility comes at a cost: the code of these
smart contracts must be executed on some virtual machine, and this must
be done every time for each transaction in the block when somebody wants
to create or validate a block. This slows down the performance of the system
compared to the case of a predefined and immutable set of types of simple
transactions, which can be optimized by implementing their processing in a
language such as C++ (instead of some virtual machine).

Ultimately, support for Turing-complete smart contracts seems to be de-
sirable in any general-purpose blockchain project; otherwise, the designers
of the blockchain project must decide in advance which applications their
blockchain will be used for. In fact, the lack of support for smart contracts
in the Bitcoin blockchain was the principal reason why a new blockchain
project, Ethereum, had to be created.

In a (heterogeneous; cf. 2.8.8) multi-chain system, one might have “the
best of both worlds” by supporting Turing-complete smart contracts in some
blockchains (i.e., workchains), and a small predefined set of highly-optimized
transactions in others.

2.8.7. Classification of multichain systems. So far, the classification
was valid both for single-chain and multi-chain systems. However, multi-
chain systems admit several more classification criteria, reflecting the rela-
tionship between the different blockchains in the system. We now discuss
these criteria.

2.8.8. Blockchain types: homogeneous and heterogeneous systems.
In a multi-chain system, all blockchains may be essentially of the same type
and have the same rules (i.e., use the same format of transactions, the same
virtual machine for executing smart-contract code, share the same cryptocur-
rency, and so on), and this similarity is explicitly exploited, but with different
data in each blockchain. In this case, we say that the system is homogeneous.
Otherwise, different blockchains (which will usually be called workchains in

68

2.8. Classification of Blockchain Projects

this case) can have different “rules”. Then we say that the system is hetero-
geneous.

2.8.9. Mixed heterogeneous-homogeneous systems. Sometimes we
have a mixed system, where there are several sets of types or rules for
blockchains, but many blockchains with the same rules are present, and this
fact is explicitly exploited. Then it is a mixed heterogeneous-homogeneous
system. To our knowledge, the TON Blockchain is the only example of such
a system.

2.8.10. Heterogeneous systems with several workchains having the
same rules, or confederations. In some cases, several blockchains (work-
chains) with the same rules can be present in a heterogeneous system, but the
interaction between them is the same as between blockchains with different
rules (i.e., their similarity is not exploited explicitly). Even if they appear
to use “the same” cryptocurrency, they in fact use different “altcoins” (inde-
pendent incarnations of the cryptocurrency). Sometimes one can even have
certain mechanisms to convert these altcoins at a rate near to 1 : 1. How-
ever, this does not make the system homogeneous in our view; it remains
heterogeneous. We say that such a heterogeneous collection of workchains
with the same rules is a confederation.

While making a heterogeneous system that allows one to create several
workchains with the same rules (i.e., a confederation) may seem a cheap way
of building a scalable system, this approach has a lot of drawbacks, too.
Essentially, if someone hosts a large project in many workchains with the
same rules, she does not obtain a large project, but rather a lot of small
instances of this project. This is like having a chat application (or a game)
that allows having at most 50 members in any chat (or game) room, but
“scales” by creating new rooms to accommodate more users when necessary.
As a result, a lot of users can participate in the chats or in the game, but
can we say that such a system is truly scalable?

2.8.11. Presence of a masterchain, external or internal. Sometimes,
a multi-chain project has a distinguished “masterchain” (sometimes called
“control blockchain”), which is used, for example, to store the overall config-
uration of the system (the set of all active blockchains, or rather workchains),
the current set of validators (for a Proof-of-Stake system), and so on. Some-
times other blockchains are “bound” to the masterchain, for example by com-
mitting the hashes of their latest blocks into it (this is something the TON

69

2.8. Classification of Blockchain Projects

Blockchain does, too).
In some cases, the masterchain is external, meaning that it is not a part

of the project, but some other pre-existing blockchain, originally completely
unrelated to its use by the new project and agnostic of it. For example, one
can try to use the Ethereum blockchain as a masterchain for an external
project, and publish special smart contracts into the Ethereum blockchain
for this purpose (e.g., for electing and punishing validators).

2.8.12. Sharding support. Some blockchain projects (or systems) have
native support for sharding, meaning that several (necessarily homogeneous;
cf. 2.8.8) blockchains are thought of as shards of a single (from a high-
level perspective) virtual blockchain. For example, one can create 256 shard
blockchains (“shardchains”) with the same rules, and keep the state of an
account in exactly one shard selected depending on the first byte of its
account_id .

Sharding is a natural approach to scaling blockchain systems, because,
if it is properly implemented, users and smart contracts in the system need
not be aware of the existence of sharding at all. In fact, one often wants to
add sharding to an existing single-chain project (such as Ethereum) when
the load becomes too high.

An alternative approach to scaling would be to use a “confederation” of
heterogeneous workchains as described in 2.8.10, allowing each user to keep
her account in one or several workchains of her choice, and transfer funds
from her account in one workchain to another workchain when necessary,
essentially performing a 1 : 1 altcoin exchange operation. The drawbacks of
this approach have already been discussed in 2.8.10.

However, sharding is not so easy to implement in a fast and reliable fash-
ion, because it implies a lot of messages between different shardchains. For
example, if accounts are evenly distributed between N shards, and the only
transactions are simple fund transfers from one account to another, then only
a small fraction (1/N) of all transactions will be performed within a single
blockchain; almost all (1 − 1/N) transactions will involve two blockchains,
requiring inter-blockchain communication. If we want these transactions to
be fast, we need a fast system for transferring messages between shardchains.
In other words, the blockchain project needs to be “tightly-coupled” in the
sense described in 2.8.14.

2.8.13. Dynamic and static sharding. Sharding might be dynamic (if
additional shards are automatically created when necessary) or static (when

70

2.8. Classification of Blockchain Projects

there is a predefined number of shards, which is changeable only through a
hard fork at best). Most sharding proposals are static; the TON Blockchain
uses dynamic sharding (cf. 2.7).

2.8.14. Interaction between blockchains: loosely-coupled and tightly-
coupled systems. Multi-blockchain projects can be classified according to
the supported level of interaction between the constituent blockchains.

The least level of support is the absence of any interaction between dif-
ferent blockchains whatsoever. We do not consider this case here, because
we would rather say that these blockchains are not parts of one blockchain
system, but just separate instances of the same blockchain protocol.

The next level of support is the absence of any specific support for
messaging between blockchains, making interaction possible in principle,
but awkward. We call such systems “loosely-coupled”; in them one must
send messages and transfer value between blockchains as if they had been
blockchains belonging to completely separate blockchain projects (e.g., Bit-
coin and Ethereum; imagine two parties want to exchange some Bitcoins,
kept in the Bitcoin blockchain, into Ethers, kept in the Ethereum blockchain).
In other words, one must include the outbound message (or its generating
transaction) in a block of the source blockchain. Then she (or some other
party) must wait for enough confirmations (e.g., a given number of subse-
quent blocks) to consider the originating transaction to be “committed” and
“immutable”, so as to be able to perform external actions based on its ex-
istence. Only then may a transaction relaying the message into the target
blockchain (perhaps along with a reference and a Merkle proof of existence
for the originating transaction) be committed.

If one does not wait long enough before transferring the message, or if
a fork happens anyway for some other reason, the joined state of the two
blockchains turns out to be inconsistent: a message is delivered into the
second blockchain that has never been generated in (the ultimately chosen
fork of) the first blockchain.

Sometimes partial support for messaging is added, by standardizing the
format of messages and the location of input and output message queues in
the blocks of all workchains (this is especially useful in heterogeneous sys-
tems). While this facilitates messaging to a certain extent, it is conceptually
not too different from the previous case, so such systems are still “loosely-
coupled”.

By contrast, “tightly-coupled” systems include special mechanisms to pro-

71

2.8. Classification of Blockchain Projects

vide fast messaging between all blockchains. The desired behavior is to be
able to deliver a message into another workchain immediately after it has
been generated in a block of the originating blockchain. On the other hand,
“tightly-coupled” systems are also expected to maintain overall consistency
in the case of forks. While these two requirements appear to be contradictory
at first glance, we believe that the mechanisms used by the TON Blockchain
(the inclusion of shardchain block hashes into masterchain blocks; the use
of “vertical” blockchains for fixing invalid blocks, cf. 2.1.17; hypercube rout-
ing, cf. 2.4.19; Instant Hypercube Routing, cf. 2.4.20) enable it to be a
“tightly-coupled” system, perhaps the only one so far.

Of course, building a “loosely-coupled” system is much simpler; however,
fast and efficient sharding (cf. 2.8.12) requires the system to be “tightly-
coupled”.

2.8.15. Simplified classification. Generations of blockchain projects.
The classification we have suggested so far splits all blockchain projects into
a large number of classes. However, the classification criteria we use happen
to be quite correlated in practice. This enables us to suggest a simplified
“generational” approach to the classification of blockchain projects, as a very
rough approximation of reality, with some examples. Projects that have not
been implemented and deployed yet are shown in italics; the most important
characteristics of a generation are shown in bold.

• First generation: Single-chain, PoW, no support for smart contracts.
Examples: Bitcoin (2009) and a lot of otherwise uninteresting imitators
(Litecoin, Monero, . . .).

• Second generation: Single-chain, PoW, smart-contract support. Ex-
ample: Ethereum (2013; deployed in 2015), at least in its original form.

• Third generation: Single-chain, PoS, smart-contract support. Exam-
ple: future Ethereum (2018 or later).

• Alternative third (3′) generation: Multi-chain, PoS, no support for
smart contracts, loosely-coupled. Example: Bitshares (2013–2014; uses
DPOS).

• Fourth generation: Multi-chain, PoS, smart-contract support,
loosely-coupled. Examples: EOS (2017; uses DPOS), PolkaDot (2016;
uses BFT).

72

2.8. Classification of Blockchain Projects

• Fifth generation: Multi-chain, PoS with BFT, smart-contract support,
tightly-coupled, with sharding. Examples: TON (2017).

While not all blockchain projects fall precisely into one of these categories,
most of them do.

2.8.16. Complications of changing the “genome” of a blockchain
project. The above classification defines the “genome” of a blockchain
project. This genome is quite “rigid”: it is almost impossible to change it
once the project is deployed and is used by a lot of people. One would need a
series of hard forks (which would require the approval of the majority of the
community), and even then the changes would need to be very conservative
in order to preserve backward compatibility (e.g., changing the semantics
of the virtual machine might break existing smart contracts). An alterna-
tive would be to create new “sidechains” with their different rules, and bind
them somehow to the blockchain (or the blockchains) of the original project.
One might use the blockchain of the existing single-blockchain project as an
external masterchain for an essentially new and separate project.26

Our conclusion is that the genome of a project is very hard to change
once it has been deployed. Even starting with PoW and planning to replace
it with PoS in the future is quite complicated.27 Adding shards to a project
originally designed without support for them seems almost impossible.28 In
fact, adding support for smart contracts into a project (namely, Bitcoin)
originally designed without support for such features has been deemed im-
possible (or at least undesirable by the majority of the Bitcoin community)
and eventually led to the creation of a new blockchain project, Ethereum.

2.8.17. Genome of the TON Blockchain. Therefore, if one wants to
build a scalable blockchain system, one must choose its genome carefully
from the very beginning. If the system is meant to support some additional
specific functionality in the future not known at the time of its deployment,
it should support “heterogeneous” workchains (having potentially different

26For example, the Plasma project plans to use the Ethereum blockchain as its (external)
masterchain; it does not interact much with Ethereum otherwise, and it could have been
suggested and implemented by a team unrelated to the Ethereum project.

27As of 2017, Ethereum is still struggling to transition from PoW to a combined
PoW+PoS system; we hope it will become a truly PoS system someday.

28There are sharding proposals for Ethereum dating back to 2015; it is unclear how
they might be implemented and deployed without disrupting Ethereum or creating an
essentially independent parallel project.

73

2.9. Comparison to Other Blockchain Projects

Project Year G. Cons. Sm. Ch. R. Sh. Int.
Bitcoin 2009 1 PoW no 1

Ethereum 2013, 2015 2 PoW yes 1
NXT 2014 2+ PoS no 1
Tezos 2017, ? 2+ PoS yes 1
Casper 2015, (2017) 3 PoW/PoS yes 1

BitShares 2013, 2014 3′ DPoS no m ht. no L
EOS 2016, (2018) 4 DPoS yes m ht. no L

PolkaDot 2016, (2019) 4 PoS BFT yes m ht. no L
Cosmos 2017, ? 4 PoS BFT yes m ht. no L
TON 2017, (2018) 5 PoS BFT yes m mix dyn. T

Table 1: A summary of some notable blockchain projects. The columns are: Project – project name;
Year – year announced and year deployed; G. – generation (cf. 2.8.15); Cons. – consensus algorithm
(cf. 2.8.3 and 2.8.4); Sm. – support for arbitrary code (smart contracts; cf. 2.8.6); Ch. – single/multiple
blockchain system (cf. 2.8.2); R. – heterogeneous/homogeneous multichain systems (cf. 2.8.8); Sh. –
sharding support (cf. 2.8.12); Int. – interaction between blockchains, (L)oose or (T)ight (cf. 2.8.14).

rules) from the start. For the system to be truly scalable, it must support
sharding from the very beginning; sharding makes sense only if the system
is “tightly-coupled” (cf. 2.8.14), so this in turn implies the existence of a
masterchain, a fast system of inter-blockchain messaging, usage of BFT PoS,
and so on.

When one takes into account all these implications, most of the design
choices made for the TON Blockchain project appear natural, and almost
the only ones possible.

2.9 Comparison to Other Blockchain Projects

We conclude our brief discussion of the TON Blockchain and its most impor-
tant and unique features by trying to find a place for it on a map containing
existing and proposed blockchain projects. We use the classification criteria
described in 2.8 to discuss different blockchain projects in a uniform way
and construct such a “map of blockchain projects”. We represent this map as
Table 1, and then briefly discuss a few projects separately to point out their
peculiarities that may not fit into the general scheme.

2.9.1. Bitcoin [12]; https://bitcoin.org/. Bitcoin (2009) is the first and
the most famous blockchain project. It is a typical first-generation blockchain
project: it is single-chain, it uses Proof-of-Work with a “longest-fork-wins”

74

https://bitcoin.org/

2.9. Comparison to Other Blockchain Projects

fork selection algorithm, and it does not have a Turing-complete scripting
language (however, simple scripts without loops are supported). The Bit-
coin blockchain has no notion of an account; it uses the UTXO (Unspent
Transaction Output) model instead.

2.9.2. Ethereum [2]; https://ethereum.org/. Ethereum (2015) is the
first blockchain with support for Turing-complete smart contracts. As such,
it is a typical second-generation project, and the most popular among them.
It uses Proof-of-Work on a single blockchain, but has smart contracts and
accounts.

2.9.3. NXT; https://nxtplatform.org/. NXT (2014) is the first PoS-
based blockchain and currency. It is still single-chain, and has no smart
contract support.

2.9.4. Tezos; https://www.tezos.com/. Tezos (2018 or later) is a pro-
posed PoS-based single-blockchain project. We mention it here because of
its unique feature: its block interpretation function ev_block (cf. 2.2.6) is
not fixed, but is determined by an OCaml module, which can be upgraded
by committing a new version into the blockchain (and collecting some votes
for the proposed change). In this way, one will be able to create custom
single-chain projects by first deploying a “vanilla” Tezos blockchain, and then
gradually changing the block interpretation function in the desired direction,
without any need for hard forks.

This idea, while intriguing, has the obvious drawback that it forbids any
optimized implementations in other languages like C++, so a Tezos-based
blockchain is destined to have lower performance. We think that a similar
result might have been obtained by publishing a formal specification of the
proposed block interpretation function ev_trans, without fixing a particular
implementation.

2.9.5. Casper.29 Casper is an upcoming PoS algorithm for Ethereum; its
gradual deployment in 2017 (or 2018), if successful, will change Ethereum into
a single-chain PoS or mixed PoW+PoS system with smart contract support,
transforming Ethereum into a third-generation project.

2.9.6. BitShares [8]; https://bitshares.org. BitShares (2014) is a plat-
form for distributed blockchain-based exchanges. It is a heterogeneous multi-

29https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/

75

https://ethereum.org/
https://nxtplatform.org/
https://www.tezos.com/
https://bitshares.org
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/

2.9. Comparison to Other Blockchain Projects

blockchain DPoS system without smart contracts; it achieves its high per-
formance by allowing only a small set of predefined specialized transaction
types, which can be efficiently implemented in C++, assuming the blockchain
state fits into memory. It is also the first blockchain project to use Delegated
Proof-of-Stake (DPoS), demonstrating its viability at least for some special-
ized purposes.

2.9.7. EOS [5]; https://eos.io. EOS (2018 or later) is a proposed het-
erogeneous multi-blockchain DPoS system with smart contract support and
with some minimal support for messaging (still loosely-coupled in the sense
described in 2.8.14). It is an attempt by the same team that has previously
successfully created the BitShares and SteemIt projects, demonstrating the
strong points of the DPoS consensus algorithm. Scalability will be achieved
by creating specialized workchains for projects that need it (e.g., a distributed
exchange might use a workchain supporting a special set of optimized trans-
actions, similarly to what BitShares did) and by creating multiple workchains
with the same rules (confederations in the sense described in 2.8.10). The
drawbacks and limitations of this approach to scalability have been discussed
in loc. cit. Cf. also 2.8.5, 2.8.12, and 2.8.14 for a more detailed discussion
of DPoS, sharding, interaction between workchains and their implications for
the scalability of a blockchain system.

At the same time, even if one will not be able to “create a Facebook
inside a blockchain” (cf. 2.9.13), EOS or otherwise, we think that EOS might
become a convenient platform for some highly-specialized weakly interacting
distributed applications, similar to BitShares (decentralized exchange) and
SteemIt (decentralized blog platform).

2.9.8. PolkaDot [17]; https://polkadot.io/. PolkaDot (2019 or later)
is one of the best thought-out and most detailed proposed multichain Proof-
of-Stake projects; its development is led by one of the Ethereum co-founders.
This project is one of the closest projects to the TON Blockchain on our map.
(In fact, we are indebted for our terminology for “fishermen” and “nominators”
to the PolkaDot project.)

PolkaDot is a heterogeneous loosely-coupled multichain Proof-of-Stake
project, with Byzantine Fault Tolerant (BFT) consensus for generation of
new blocks and a masterchain (which might be external—e.g., the Ethereum
blockchain). It also uses hypercube routing, somewhat like (the slow version
of) TON’s as described in 2.4.19.

76

https://eos.io
https://polkadot.io/

2.9. Comparison to Other Blockchain Projects

Its unique feature is its ability to create not only public, but also private
blockchains. These private blockchains would also be able to interact with
other public blockchains, PolkaDot or otherwise.

As such, PolkaDot might become a platform for large-scale private block-
chains, which might be used, for example, by bank consortiums to quickly
transfer funds to each other, or for any other uses a large corporation might
have for private blockchain technology.

However, PolkaDot has no sharding support and is not tightly-coupled.
This somewhat hampers its scalability, which is similar to that of EOS. (Per-
haps a bit better, because PolkaDot uses BFT PoS instead of DPoS.)

2.9.9. Universa; https://universa.io. The only reason we mention this
unusual blockchain project here is because it is the only project so far to
make in passing an explicit reference to something similar to our Infinite
Sharding Paradigm (cf. 2.1.2). Its other peculiarity is that it bypasses all
complications related to Byzantine Fault Tolerance by promising that only
trusted and licensed partners of the project will be admitted as validators,
hence they will never commit invalid blocks. This is an interesting decision;
however, it essentially makes a blockchain project deliberately centralized,
something blockchain projects usually want to avoid (why does one need a
blockchain at all to work in a trusted centralized environment?).

2.9.10. Plasma; https://plasma.io). Plasma (2019?) is an unconven-
tional blockchain project from another co-founder of Ethereum. It is sup-
posed to mitigate some limitations of Ethereum without introducing shard-
ing. In essence, it is a separate project from Ethereum, introducing a hier-
archy of (heterogeneous) workchains, bound to the Ethereum blockchain (to
be used as an external masterchain) at the top level. Funds can be trans-
ferred from any blockchain up in the hierarchy (starting from the Ethereum
blockchain as the root), along with a description of a job to be done. Then
the necessary computations are done in the child workchain (possibly re-
quiring forwarding of parts of the original job further down the tree), their
results are passed up, and a reward is collected. The problem of achieving
consistency and validating these workchains is circumvented by a (payment
channel-inspired) mechanism allowing users to unilaterally withdraw their
funds from a misbehaving workchain to its parent workchain (albeit slowly),
and re-allocate their funds and their jobs to another workchain.

In this way, Plasma might become a platform for distributed compu-
tations bound to the Ethereum blockchain, something like a “mathematical

77

https://universa.io
https://plasma.io

2.9. Comparison to Other Blockchain Projects

co-processor”. However, this does not seem like a way to achieve true general-
purpose scalability.

2.9.11. Specialized blockchain projects. There are also some specialized
blockchain projects, such as FileCoin (a system that incentivizes users to offer
their disk space for storing the files of other users who are willing to pay for
it), Golem (a blockchain-based platform for renting and lending computing
power for specialized applications such as 3D-rendering) or SONM (another
similar computing power-lending project). Such projects do not introduce
anything conceptually new on the level of blockchain organization; rather,
they are particular blockchain applications, which could be implemented by
smart contracts running in a general-purpose blockchain, provided it can
deliver the required performance. As such, projects of this kind are likely
to use one of the existing or planned blockchain projects as their base, such
as EOS, PolkaDot or TON. If a project needs “true” scalability (based on
sharding), it would better use TON; if it is content to work in a “confederated”
context by defining a family of workchains of its own, explicitly optimized
for its purpose, it might opt for EOS or PolkaDot.

2.9.12. The TON Blockchain. The TON (Telegram Open Network)
Blockchain (planned 2018) is the project we are describing in this document.
It is designed to be the first fifth-generation blockchain project—that is, a
BFT PoS-multichain project, mixed homogeneous/heterogeneous, with sup-
port for (shardable) custom workchains, with native sharding support, and
tightly-coupled (in particular, capable of forwarding messages between shards
almost instantly while preserving a consistent state of all shardchains). As
such, it will be a truly scalable general-purpose blockchain project, capable
of accommodating essentially any applications that can be implemented in
a blockchain at all. When augmented by the other components of the TON
Project (cf. 1), its possibilities expand even further.

2.9.13. Is it possible to “upload Facebook into a blockchain”? Some-
times people claim that it will be possible to implement a social network on
the scale of Facebook as a distributed application residing in a blockchain.
Usually a favorite blockchain project is cited as a possible “host” for such an
application.

We cannot say that this is a technical impossibility. Of course, one needs
a tightly-coupled blockchain project with true sharding (i.e., TON) in order
for such a large application not to work too slowly (e.g., deliver messages

78

2.9. Comparison to Other Blockchain Projects

and updates from users residing in one shardchain to their friends residing in
another shardchain with reasonable delays). However, we think that this is
not needed and will never be done, because the price would be prohibitive.

Let us consider “uploading Facebook into a blockchain” as a thought ex-
periment; any other project of similar scale might serve as an example as well.
Once Facebook is uploaded into a blockchain, all operations currently done
by Facebook’s servers will be serialized as transactions in certain blockchains
(e.g., TON’s shardchains), and will be performed by all validators of these
blockchains. Each operation will have to be performed, say, at least twenty
times, if we expect every block to collect at least twenty validator signatures
(immediately or eventually, as in DPOS systems). Similarly, all data kept by
Facebook’s servers on their disks will be kept on the disks of all validators
for the corresponding shardchain (i.e., in at least twenty copies).

Because the validators are essentially the same servers (or perhaps clus-
ters of servers, but this does not affect the validity of this argument) as those
currently used by Facebook, we see that the total hardware expenses associ-
ated with running Facebook in a blockchain are at least twenty times higher
than if it were implemented in the conventional way.

In fact, the expenses would be much higher still, because the blockchain’s
virtual machine is slower than the “bare CPU” running optimized compiled
code, and its storage is not optimized for Facebook-specific problems. One
might partially mitigate this problem by crafting a specific workchain with
some special transactions adapted for Facebook; this is the approach of
BitShares and EOS to achieving high performance, available in the TON
Blockchain as well. However, the general blockchain design would still im-
pose some additional restrictions by itself, such as the necessity to register
all operations as transactions in a block, to organize these transactions in a
Merkle tree, to compute and check their Merkle hashes, to propagate this
block further, and so on.

Therefore, a conservative estimate is that one would need 100 times more
servers of the same performance as those used by Facebook now in order to
validate a blockchain project hosting a social network of that scale. Some-
body will have to pay for these servers, either the company owning the dis-
tributed application (imagine seeing 700 ads on each Facebook page instead
of 7) or its users. Either way, this does not seem economically viable.

We believe that it is not true that everything should be uploaded into the
blockchain. For example, it is not necessary to keep user photographs in the
blockchain; registering the hashes of these photographs in the blockchain and

79

2.9. Comparison to Other Blockchain Projects

keeping the photographs in a distributed off-chain storage (such as FileCoin
or TON Storage) would be a better idea. This is the reason why TON is not
just a blockchain project, but a collection of several components (TON P2P
Network, TON Storage, TON Services) centered around the TON Blockchain
as outlined in Chapters 1 and 4.

80

3.1. Abstract Datagram Network Layer

3 TON Networking
Any blockchain project requires not only a specification of block format and
blockchain validation rules, but also a network protocol used to propagate
new blocks, send and collect transaction candidates and so on. In other
words, a specialized peer-to-peer network must be set up by every blockchain
project. This network must be peer-to-peer, because blockchain projects are
normally expected to be decentralized, so one cannot rely on a centralized
group of servers and use conventional client-server architecture, as, for in-
stance, classical online banking applications do. Even light clients (e.g., light
cryptocurrency wallet smartphone applications), which must connect to full
nodes in a client-server–like fashion, are actually free to connect to another
full node if their previous peer goes down, provided the protocol used to
connect to full nodes is standardized enough.

While the networking demands of single-blockchain projects, such as Bit-
coin or Ethereum, can be met quite easily (one essentially needs to construct
a “random” peer-to-peer overlay network, and propagate all new blocks and
transaction candidates by a gossip protocol), multi-blockchain projects, such
as the TON Blockchain, are much more demanding (e.g., one must be able to
subscribe to updates of only some shardchains, not necessarily all of them).
Therefore, the networking part of the TON Blockchain and the TON Project
as a whole merits at least a brief discussion.

On the other hand, once the more sophisticated network protocols needed
to support the TON Blockchain are in place, it turns out that they can easily
be used for purposes not necessarily related to the immediate demands of the
TON Blockchain, thus providing more possibilities and flexibility for creating
new services in the TON ecosystem.

3.1 Abstract Datagram Network Layer

The cornerstone in building the TON networking protocols is the (TON)
Abstract (Datagram) Network Layer. It enables all nodes to assume certain
“network identities”, represented by 256-bit “abstract network addresses”, and
communicate (send datagrams to each other, as a first step) using only these
256-bit network addresses to identify the sender and the receiver. In partic-
ular, one does not need to worry about IPv4 or IPv6 addresses, UDP port
numbers, and the like; they are hidden by the Abstract Network Layer.

81

3.1. Abstract Datagram Network Layer

3.1.1. Abstract network addresses. An abstract network address, or an
abstract address, or just address for short, is a 256-bit integer, essentially
equal to a 256-bit ECC public key. This public key can be generated arbi-
trarily, thus creating as many different network identities as the node likes.
However, one must know the corresponding private key in order to receive
(and decrypt) messages intended for such an address.

In fact, the address is not the public key itself; instead, it is a 256-bit
hash (Hash = sha256) of a serialized TL-object (cf. 2.2.5) that can describe
several types of public keys and addresses depending on its constructor (first
four bytes). In the simplest case, this serialized TL-object consists just of a
4-byte magic number and a 256-bit elliptic curve cryptography (ECC) public
key; in this case, the address will equal the hash of this 36-byte structure.
One might use, however, 2048-bit RSA keys, or any other scheme of public-
key cryptography instead.

When a node learns another node’s abstract address, it must also receive
its “preimage” (i.e., the serialized TL-object, the hash of which equals that
abstract address) or else it will not be able to encrypt and send datagrams
to that address.

3.1.2. Lower-level networks. UDP implementation. From the per-
spective of almost all TON Networking components, the only thing that
exists is a network (the Abstract Datagram Networking Layer) able to (un-
reliably) send datagrams from one abstract address to another. In principle,
the Abstract Datagram Networking Layer (ADNL) can be implemented over
different existing network technologies. However, we are going to implement
it over UDP in IPv4/IPv6 networks (such as the Internet or intranets), with
an optional TCP fallback if UDP is not available.

3.1.3. Simplest case of ADNL over UDP. The simplest case of sending
a datagram from a sender’s abstract address to any other abstract address
(with known preimage) can be implemented as follows.

Suppose that the sender somehow knows the IP-address and the UDP
port of the receiver who owns the destination abstract address, and that
both the receiver and the sender use abstract addresses derived from 256-bit
ECC public keys.

In this case, the sender simply augments the datagram to be sent by its
ECC signature (done with its private key) and its source address (or the
preimage of the source address, if the receiver is not known to know that

82

3.1. Abstract Datagram Network Layer

preimage yet). The result is encrypted with the recipient’s public key, em-
bedded into a UDP datagram and sent to the known IP and port of the
recipient. Because the first 256 bits of the UDP datagram contain the recip-
ient’s abstract address, the recipient can identify which private key should
be used to decrypt the remainder of the datagram. Only after that is the
sender’s identity revealed.

3.1.4. Less secure way, with the sender’s address in plaintext. Some-
times a less secure scheme is sufficient, when the recipient’s and the sender’s
addresses are kept in plaintext in the UDP datagram; the sender’s private
key and the recipient’s public key are combined together using ECDH (Ellip-
tic Curve Diffie–Hellman) to generate a 256-bit shared secret, which is used
afterwards, along with a random 256-bit nonce also included in the unen-
crypted part, to derive AES keys used for encryption. The integrity may be
provided, for instance, by concatenating the hash of the original plaintext
data to the plaintext before encryption.

This approach has the advantage that, if more than one datagram is
expected to be exchanged between the two addresses, the shared secret can
be computed only once and then cached; then slower elliptic curve operations
will no longer be required for encrypting or decrypting the next datagrams.

3.1.5. Channels and channel identifiers. In the simplest case, the first
256 bits of a UDP datagram carrying an embedded TON ADNL datagram
will be equal to the recipient’s address. However, in general they constitute
a channel identifier. There are different types of channels. Some of them
are point-to-point; they are created by two parties who wish to exchange a
lot of data in the future and generate a shared secret by exchanging several
packets encrypted as described in 3.1.3 or 3.1.4, by running classical or
elliptic curve Diffie–Hellman (if extra security is required), or simply by one
party generating a random shared secret and sending it to the other party.

After that, a channel identifier is derived from the shared secret combined
with some additional data (such as the sender’s and recipient’s addresses),
for instance by hashing, and that identifier is used as the first 256 bits of
UDP datagrams carrying data encrypted with the aid of that shared secret.

3.1.6. Channel as a tunnel identifier. In general, a “channel”, or “chan-
nel identifier” simply selects a way of processing an inbound UDP datagram,
known to the receiver. If the channel is the receiver’s abstract address, the
processing is done as outlined in 3.1.3 or 3.1.4; if the channel is an estab-

83

3.1. Abstract Datagram Network Layer

lished point-to-point channel discussed in 3.1.5, the processing consists in
decrypting the datagram with the aid of the shared secret as explained in
loc. cit., and so on.

In particular, a channel identifier can actually select a “tunnel”, when
the immediate recipient simply forwards the received message to somebody
else—the actual recipient or another proxy. Some encryption or decryption
steps (reminiscent of “onion routing” [6] or even “garlic routing”30) might be
done along the way, and another channel identifier might be used for re-
encrypted forwarded packets (for example, a peer-to-peer channel could be
employed to forward the packet to the next recipient on the path).

In this way, some support for “tunneling” and “proxying”—somewhat sim-
ilar to that provided by the TOR or I2P projects—can be added on the level
of the TON Abstract Datagram Network Layer, without affecting the func-
tionality of all higher-level TON network protocols, which would be agnostic
of such an addition. This opportunity is exploited by the TON Proxy service
(cf. 4.1.11).

3.1.7. Zero channel and the bootstrap problem. Normally, a TON
ADNL node will have some “neighbor table”, containing information about
other known nodes, such as their abstract addresses and their preimages (i.e.,
public keys) and their IP addresses and UDP ports. Then it will gradually
extend this table by using information learned from these known nodes as
answers to special queries, and sometimes prune obsolete records.

However, when a TON ADNL node just starts up, it may happen that it
does not know any other node, and can learn only the IP address and UDP
port of a node, but not its abstract address. This happens, for example, if
a light client is not able to access any of the previously cached nodes and
any nodes hardcoded into the software, and must ask the user to enter an IP
address or a DNS domain of a node, to be resolved through DNS.

In this case, the node will send packets to a special “zero channel” of the
node in question. This does not require knowledge of the recipient’s public
key (but the message should still contain the sender’s identity and signature),
so the message is transferred without encryption. It should be normally used
only to obtain an identity (maybe a one-time identity created especially for
this purpose) of the receiver, and then to start communicating in a safer way.

Once at least one node is known, it is easy to populate the “neighbor
table” and “routing table” by more entries, learning them from answers to

30https://geti2p.net/en/docs/how/garlic-routing

84

https://geti2p.net/en/docs/how/garlic-routing

3.2. TON DHT: Kademlia-like Distributed Hash Table

special queries sent to the already known nodes.
Not all nodes are required to process datagrams sent to the zero channel,

but those used to bootstrap light clients should support this feature.

3.1.8. TCP-like stream protocol over ADNL. The ADNL, being an un-
reliable (small-size) datagram protocol based on 256-bit abstract addresses,
can be used as a base for more sophisticated network protocols. One can
build, for example, a TCP-like stream protocol, using ADNL as an abstract
replacement for IP. However, most components of the TON Project do not
need such a stream protocol.

3.1.9. RLDP, or Reliable Large Datagram Protocol over ADNL. A
reliable arbitrary-size datagram protocol built upon the ADNL, called RLDP,
is used instead of a TCP-like protocol. This reliable datagram protocol can
be employed, for instance, to send RPC queries to remote hosts and receive
answers from them (cf. 4.1.5).

3.2 TON DHT: Kademlia-like Distributed Hash Table

The TON Distributed Hash Table (DHT) plays a crucial role in the net-
working part of the TON Project, being used to locate other nodes in the
network. For example, a client wanting to commit a transaction into a shard-
chain might want to find a validator or a collator of that shardchain, or at
least some node that might relay the client’s transaction to a collator. This
can be done by looking up a special key in the TON DHT. Another impor-
tant application of the TON DHT is that it can be used to quickly populate
a new node’s neighbor table (cf. 3.1.7), simply by looking up a random key,
or the new node’s address. If a node uses proxying and tunneling for its in-
bound datagrams, it publishes the tunnel identifier and its entry point (e.g.,
IP address and UDP port) in the TON DHT; then all nodes wishing to send
datagrams to that node will obtain this contact information from the DHT
first.

The TON DHT is a member of the family of Kademlia-like distributed
hash tables [10].

3.2.1. Keys of the TON DHT. The keys of the TON DHT are simply 256-
bit integers. In most cases, they are computed as sha256 of a TL-serialized
object (cf. 2.2.5), called preimage of the key, or key description. In some
cases, the abstract addresses of the TON Network nodes (cf. 3.1.1) can also

85

3.2. TON DHT: Kademlia-like Distributed Hash Table

be used as keys of the TON DHT, because they are also 256-bit, and they are
also hashes of TL-serialized objects. For example, if a node is not afraid of
publishing its IP address, it can be found by anybody who knows its abstract
address by simply looking up that address as a key in the DHT.

3.2.2. Values of the DHT. The values assigned to these 256-bit keys are
essentially arbitrary byte strings of limited length. The interpretation of
such byte strings is determined by the preimage of the corresponding key; it
is usually known both by the node that looks up the key, and by the node
that stores the key.

3.2.3. Nodes of the DHT. Semi-permanent network identities. The
key-value mapping of the TON DHT is kept on the nodes of the DHT—
essentially, all members of the TON Network. To this end, any node of the
TON Network (perhaps with the exception of some very light nodes), apart
from any number of ephemeral and permanent abstract addresses described
in 3.1.1, has at least one “semi-permanent address”, which identifies it as a
member of the TON DHT. This semi-permanent or DHT address should not
to be changed too often, otherwise other nodes would be unable to locate the
keys they are looking for. If a node does not want to reveal its “true” identity,
it generates a separate abstract address to be used only for the purpose of
participating in the DHT. However, this abstract address must be public,
because it will be associated with the node’s IP address and port.

3.2.4. Kademlia distance. Now we have both 256-bit keys and 256-bit
(semi-permanent) node addresses. We introduce the so-called XOR distance
or Kademlia distance dK on the set of 256-bit sequences, given by

dK(x, y) := (x⊕ y) interpreted as an unsigned 256-bit integer (25)

Here x⊕ y denotes the bitwise eXclusive OR (XOR) of two bit sequences of
the same length.

The Kademlia distance introduces a metric on the set 2256 of all 256-bit
sequences. In particular, we have dK(x, y) = 0 if and only if x = y, dK(x, y) =
dK(y, x), and dK(x, z) ≤ dK(x, y) + dK(y, z). Another important property is
that there is only one point at any given distance from x: dK(x, y) = dK(x, y′)
implies y = y′.

3.2.5. Kademlia-like DHTs and the TON DHT. We say that a dis-
tributed hash table (DHT) with 256-bit keys and 256-bit node addresses is a

86

3.2. TON DHT: Kademlia-like Distributed Hash Table

Kademlia-like DHT if it is expected to keep the value of keyK on sKademlia-
nearest nodes to K (i.e., the s nodes with smallest Kademlia distance from
their addresses to K.)

Here s is a small parameter, say, s = 7, needed to improve reliability of
the DHT (if we would keep the key only on one node, the nearest one to K,
the value of that key would be lost if that only node goes offline).

The TON DHT is a Kademlia-like DHT, according to this definition. It
is implemented over the ADNL protocol described in 3.1.

3.2.6. Kademlia routing table. Any node participating in a Kademlia-
like DHT usually maintains a Kademlia routing table. In the case of TON
DHT, it consists of n = 256 buckets, numbered from 0 to n − 1. The i-th
bucket will contain information about some known nodes (a fixed number t
of “best” nodes, and maybe some extra candidates) that lie at a Kademlia
distance from 2i to 2i+1 − 1 from the node’s address a.31 This information
includes their (semi-permanent) addresses, IP addresses and UDP ports, and
some availability information such as the time and the delay of the last ping.

When a Kademlia node learns about any other Kademlia node as a result
of some query, it includes it into a suitable bucket of its routing table, first
as a candidate. Then, if some of the “best” nodes in that bucket fail (e.g., do
not respond to ping queries for a long time), they can be replaced by some
of the candidates. In this way the Kademlia routing table stays populated.

New nodes from the Kademlia routing table are also included in the
ADNL neighbor table described in 3.1.7. If a “best” node from a bucket of
the Kademlia routing table is used often, a channel in the sense described
in 3.1.5 can be established to facilitate the encryption of datagrams.

A special feature of the TON DHT is that it tries to select nodes with the
smallest round-trip delays as the “best” nodes for the buckets of the Kademlia
routing table.

3.2.7. (Kademlia network queries.) A Kademlia node usually supports the
following network queries:

• Ping – Checks node availability.
31If there are sufficiently many nodes in a bucket, it can be subdivided further into, say,

eight sub-buckets depending on the top four bits of the Kademlia distance. This would
speed up DHT lookups.

87

3.2. TON DHT: Kademlia-like Distributed Hash Table

• Store(key, value) – Asks the node to keep value as a value for key
key. For TON DHT, the Store queries are slightly more complicated
(cf. 3.2.9).

• Find_Node(key, l) – Asks the node to return l Kademlia-nearest
known nodes (from its Kademlia routing table) to key.

• Find_Value(key, l) – The same as above, but if the node knows the
value corresponding to key key, it just returns that value.

When any node wants to look up the value of a key K, it first creates
a set S of s′ nodes (for some small value of s′, say, s′ = 5), nearest to K
with respect to the Kademlia distance among all known nodes (i.e., they are
taken from the Kademlia routing table). Then a Find_Value query is sent
to each of them, and nodes mentioned in their answers are included in S.
Then the s′ nodes from S, nearest to K, are also sent a Find_Value query
if this hasn’t been done before, and the process continues until the value is
found or the set S stops growing. This is a sort of “beam search” of the node
nearest to K with respect to Kademlia distance.

If the value of some key K is to be set, the same procedure is run for
s′ ≥ s, with Find_Node queries instead of Find_Value, to find s nearest
nodes to K. Afterwards, Store queries are sent to all of them.

There are some less important details in the implementation of a Kademlia-
like DHT (for example, any node should look up s nearest nodes to itself, say,
once every hour, and re-publish all stored keys to them by means of Store
queries). We will ignore them for the time being.

3.2.8. Booting a Kademlia node. When a Kademlia node goes online,
it first populates its Kademlia routing table by looking up its own address.
During this process, it identifies the s nearest nodes to itself. It can download
from them all (key, value) pairs known to them to populate its part of the
DHT.

3.2.9. Storing values in TON DHT. Storing values in TON DHT is
slightly different from a general Kademlia-like DHT. When someone wishes
to store a value, she must provide not only the key K itself to the Store
query, but also its preimage—i.e., a TL-serialized string (with one of several
predefined TL-constructors at the beginning) containing a “description” of
the key. This key description is later kept by the node, along with the key
and the value.

88

3.2. TON DHT: Kademlia-like Distributed Hash Table

The key description describes the “type” of the object being stored, its
“owner”, and its “update rules” in case of future updates. The owner is
usually identified by a public key included in the key description. If it is
included, normally only updates signed by the corresponding private key will
be accepted. The “type” of the stored object is normally just a byte string.
However, in some cases it can be more sophisticated—for example, an input
tunnel description (cf. 3.1.6), or a collection of node addresses.

The “update rules” can also be different. In some cases, they simply
permit replacing the old value with the new value, provided the new value
is signed by the owner (the signature must be kept as part of the value, to
be checked later by any other nodes after they obtain the value of this key).
In other cases, the old value somehow affects the new value. For example, it
can contain a sequence number, and the old value is overwritten only if the
new sequence number is larger (to prevent replay attacks).

3.2.10. Distributed “torrent trackers” and “network interest groups”
in TON DHT. Yet another interesting case is when the value contains a
list of nodes—perhaps with their IP addresses and ports, or just with their
abstract addresses—and the “update rule” consists in including the requester
in this list, provided she can confirm her identity.

This mechanism might be used to create a distributed “torrent tracker”,
where all nodes interested in a certain “torrent” (i.e., a certain file) can find
other nodes that are interested in the same torrent, or already have a copy.

TON Storage (cf. 4.1.8) uses this technology to find the nodes that have
a copy of a required file (e.g., a snapshot of the state of a shardchain, or an
old block). However, its more important use is to create “overlay multicast
subnetworks” and “network interest groups” (cf. 3.3). The idea is that only
some nodes are interested in the updates of a specific shardchain. If the
number of shardchains becomes very large, finding even one node interested in
the same shard may become complicated. This “distributed torrent tracker”
provides a convenient way to find some of these nodes. Another option
would be to request them from a validator, but this would not be a scalable
approach, and validators might choose not to respond to such queries coming
from arbitrary unknown nodes.

3.2.11. Fall-back keys. Most of the “key types” described so far have an
extra 32-bit integer field in their TL description, normally equal to zero.
However, if the key obtained by hashing that description cannot be retrieved
from or updated in the TON DHT, the value in this field is increased, and

89

3.2. TON DHT: Kademlia-like Distributed Hash Table

a new attempt is made. In this way, one cannot “capture” and “censor”
a key (i.e., perform a key retention attack) by creating a lot of abstract
addresses lying near the key under attack and controlling the corresponding
DHT nodes.

3.2.12. Locating services. Some services, located in the TON Network
and available through the (higher-level protocols built upon the) TON ADNL
described in 3.1, may want to publish their abstract addresses somewhere,
so that their clients would know where to find them.

However, publishing the service’s abstract address in the TON Blockchain
may not be the best approach, because the abstract address might need to
be changed quite often, and because it could make sense to provide several
addresses, for reliability or load balancing purposes.

An alternative is to publish a public key into the TON Blockchain, and
use a special DHT key indicating that public key as its “owner” in the TL
description string (cf. 2.2.5) to publish an up-to-date list of the service’s
abstract addresses. This is one of the approaches exploited by TON Services.

3.2.13. Locating owners of TON blockchain accounts. In most cases,
owners of TON blockchain accounts would not like to be associated with
abstract network addresses, and especially IP addresses, because this can
violate their privacy. In some cases, however, the owner of a TON blockchain
account may want to publish one or several abstract addresses where she
could be contacted.

A typical case is that of a node in the TON Payments “lightning network”
(cf. 5.2), the platform for instant cryptocurrency transfers. A public TON
Payments node may want not only to establish payment channels with other
peers, but also to publish an abstract network address that could be used
to contact it at a later time for transferring payments along the already-
established channels.

One option would be to include an abstract network address in the smart
contract creating the payment channel. A more flexible option is to include a
public key in the smart contract, and then use DHT as explained in 3.2.12.

The most natural way would be to use the same private key that con-
trols the account in the TON Blockchain to sign and publish updates in the
TON DHT about the abstract addresses associated with that account. This
is done almost in the same way as described in 3.2.12; however, the DHT
key employed would require a special key description, containing only the

90

3.3. Overlay Networks and Multicasting Messages

account_id itself, equal to sha256 of the “account description”, which con-
tains the public key of the account. The signature, included in the value of
this DHT key, would contain the account description as well.

In this way, a mechanism for locating abstract network addresses of some
owners of the TON Blockchain accounts becomes available.

3.2.14. Locating abstract addresses. Notice that the TON DHT, while
being implemented over TON ADNL, is itself used by the TON ADNL for
several purposes.

The most important of them is to locate a node or its contact data starting
from its 256-bit abstract address. This is necessary because the TON ADNL
should be able to send datagrams to arbitrary 256-bit abstract addresses,
even if no additional information is provided.

To this end, the 256-bit abstract address is simply looked up as a key in
the DHT. Either a node with this address (i.e., using this address as a public
semi-persistent DHT address) is found, in which case its IP address and port
can be learned; or, an input tunnel description may be retrieved as the value
of the key in question, signed by the correct private key, in which case this
tunnel description would be used to send ADNL datagrams to the intended
recipient.

Notice that in order to make an abstract address “public” (reachable from
any nodes in the network), its owner must either use it as a semi-permanent
DHT address, or publish (in the DHT key equal to the abstract address
under consideration) an input tunnel description with another of its public
abstract addresses (e.g., the semi-permanent address) as the tunnel’s entry
point. Another option would be to simply publish its IP address and UDP
port.

3.3 Overlay Networks and Multicasting Messages

In a multi-blockchain system like the TON Blockchain, even full nodes would
normally be interested in obtaining updates (i.e., new blocks) only about
some shardchains. To this end, a special overlay (sub)network must be built
inside the TON Network, on top of the ADNL protocol discussed in 3.1, one
for each shardchain.

Therefore, the need to build arbitrary overlay subnetworks, open to any
nodes willing to participate, arises. Special gossip protocols, built upon
ADNL, will be run in these overlay networks. In particular, these gossip

91

3.3. Overlay Networks and Multicasting Messages

protocols may be used to propagate (broadcast) arbitrary data inside such a
subnetwork.

3.3.1. Overlay networks. An overlay (sub)network is simply a (virtual)
network implemented inside some larger network. Usually only some nodes
of the larger network participate in the overlay subnetwork, and only some
“links” between these nodes, physical or virtual, are part of the overlay sub-
network.

In this way, if the encompassing network is represented as a graph (per-
haps a full graph in the case of a datagram network such as ADNL, where
any node can easily communicate to any other), the overlay subnetwork is a
subgraph of this graph.

In most cases, the overlay network is implemented using some protocol
built upon the network protocol of the larger network. It may use the same
addresses as the larger network, or use custom addresses.

3.3.2. Overlay networks in TON. Overlay networks in TON are built
upon the ADNL protocol discussed in 3.1; they use 256-bit ADNL abstract
addresses as addresses in the overlay networks as well. Each node usually
selects one of its abstract addresses to double as its address in the overlay
network.

In contrast to ADNL, the TON overlay networks usually do not support
sending datagrams to arbitrary other nodes. Instead, some “semipermanent
links” are established between some nodes (called “neighbors” with respect to
the overlay network under consideration), and messages are usually forwarded
along these links (i.e., from a node to one of its neighbors). In this way, a
TON overlay network is a (usually not full) subgraph inside the (full) graph
of the ADNL network.

Links to neighbors in TON overlay networks can be implemented using
dedicated peer-to-peer ADNL channels (cf. 3.1.5).

Each node of an overlay network maintains a list of neighbors (with re-
spect to the overlay network), containing their abstract addresses (which
they use to identify them in the overlay network) and some link data (e.g.,
the ADNL channel used to communicate with them).

3.3.3. Private and public overlay networks. Some overlay networks
are public, meaning that any node can join them at will. Other are private,
meaning that only certain nodes can be admitted (e.g., those that can prove

92

3.3. Overlay Networks and Multicasting Messages

their identities as validators.) Some private overlay networks can even be un-
known to the “general public”. The information about such overlay networks
is made available only to certain trusted nodes; for example, it can be en-
crypted with a public key, and only nodes having a copy of the corresponding
private key will be able to decrypt this information.

3.3.4. Centrally controlled overlay networks. Some overlay networks
are centrally controlled, by one or several nodes, or by the owner of some
widely-known public key. Others are decentralized, meaning that there are
no specific nodes responsible for them.

3.3.5. Joining an overlay network. When a node wants to join an over-
lay network, it first must learn its 256-bit network identifier, usually equal
to sha256 of the description of the overlay network—a TL-serialized object
(cf. 2.2.5) which may contain, for instance, the central authority of the over-
lay network (i.e., its public key and perhaps its abstract address,32) a string
with the name of the overlay network, a TON Blockchain shard identifier if
this is an overlay network related to that shard, and so on.

Sometimes it is possible to recover the overlay network description start-
ing from the network identifier, simply by looking it up in the TON DHT. In
other cases (e.g., for private overlay networks), one must obtain the network
description along with the network identifier.

3.3.6. Locating one member of the overlay network. After a node
learns the network identifier and the network description of the overlay net-
work it wants to join, it must locate at least one node belonging to that
network.

This is also needed for nodes that do not want to join the overlay network,
but want just to communicate with it; for example, there might be an overlay
network dedicated to collecting and propagating transaction candidates for
a specific shardchain, and a client might want to connect to any node of this
network to suggest a transaction.

The method used for locating members of an overlay network is defined in
the description of that network. Sometimes (especially for private networks)
one must already know a member node to be able to join. In other cases, the
abstract addresses of some nodes are contained in the network description.
A more flexible approach is to indicate in the network description only the

32Alternatively, the abstract address might be stored in the DHT as explained in 3.2.12.

93

3.3. Overlay Networks and Multicasting Messages

central authority responsible for the network, and then the abstract addresses
will be available through values of certain DHT keys, signed by that central
authority.

Finally, truly decentralized public overlay networks can use the “dis-
tributed torrent-tracker” mechanism described in 3.2.10, also implemented
with the aid of the TON DHT.

3.3.7. Locating more members of the overlay network. Creating
links. Once one node of the overlay network is found, a special query may be
sent to that node requesting a list of other members, for instance, neighbors
of the node being queried, or a random selection thereof.

This enables the joining member to populate her “adjacency” or “neighbor
list” with respect to the overlay network, by selecting some newly-learned
network nodes and establishing links to them (i.e., dedicated ADNL point-
to-point channels, as outlined in 3.3.2). After that, special messages are
sent to all neighbors indicating that the new member is ready to work in the
overlay network. The neighbors include their links to the new member in
their neighbor lists.

3.3.8. Maintaining the neighbor list. An overlay network node must
update its neighbor list from time to time. Some neighbors, or at least links
(channels) to them, may stop responding; in this case, these links must be
marked as “suspended”, some attempts to reconnect to such neighbors must
be made, and, if these attempts fail, the links must be destroyed.

On the other hand, every node sometimes requests from a randomly cho-
sen neighbor its list of neighbors (or some random selection thereof), and uses
it to partially update its own neighbor list, by adding some newly-discovered
nodes to it, and removing some of the old ones, either randomly or depending
on their response times and datagram loss statistics.

3.3.9. The overlay network is a random subgraph. In this way, the
overlay network becomes a random subgraph inside the ADNL network. If
the degree of each vertex is at least three (i.e., if each node is connected to
at least three neighbors), this random graph is known to be connected with a
probability almost equal to one. More precisely, the probability of a random
graph with n vertices being disconnected is exponentially small, and this
probability can be completely neglected if, say, n ≥ 20. (Of course, this does
not apply in the case of a global network partition, when nodes on different
sides of the partition have no chance to learn about each other.) On the

94

3.3. Overlay Networks and Multicasting Messages

other hand, if n is smaller than 20, it would suffice to require each vertex to
have, say, at least ten neighbors.

3.3.10. TON overlay networks are optimized for lower latency. TON
overlay networks optimize the “random” network graph generated by the pre-
vious method as follows. Every node tries to retain at least three neighbors
with the minimal round-trip time, changing this list of “fast neighbors” very
rarely. At the same time, it also has at least three other “slow neighbors” that
are chosen completely randomly, so that the overlay network graph would al-
ways contain a random subgraph. This is required to maintain connectivity
and prevent splitting of the overlay network into several unconnected regional
subnetworks. At least three “intermediate neighbors”, which have intermedi-
ate round-trip times, bounded by a certain constant (actually, a function of
the round-trip times of the fast and the slow neighbors), are also chosen and
retained.

In this way, the graph of an overlay network still maintains enough ran-
domness to be connected, but is optimized for lower latency and higher
throughput.

3.3.11. Gossip protocols in an overlay network. An overlay network
is often used to run one of the so-called gossip protocols, which achieve some
global goal while letting every node interact only with its neighbors. For
example, there are gossip protocols to construct an approximate list of all
members of a (not too large) overlay network, or to compute an estimate of
the number of members of an (arbitrarily large) overlay network, using only
a bounded amount of memory at each node (cf. [15, 4.4.3] or [1] for details).

3.3.12. Overlay network as a broadcast domain. The most impor-
tant gossip protocol running in an overlay network is the broadcast protocol,
intended to propagate broadcast messages generated by any node of the net-
work, or perhaps by one of the designated sender nodes, to all other nodes.

There are in fact several broadcast protocols, optimized for different use
cases. The simplest of them receives new broadcast messages and relays them
to all neighbors that have not yet sent a copy of that message themselves.

3.3.13. More sophisticated broadcast protocols. Some applications
may warrant more sophisticated broadcast protocols. For instance, for broad-
casting messages of substantial size, it makes sense to send to the neighbors
not the newly-received message itself, but its hash (or a collection of hashes

95

3.3. Overlay Networks and Multicasting Messages

of new messages). The neighbor may request the message itself after learning
a previously unseen message hash, to be transferred, say, using the reliable
large datagram protocol (RLDP) discussed in 3.1.9. In this way, the new
message will be downloaded from one neighbor only.

3.3.14. Checking the connectivity of an overlay network. The con-
nectivity of an overlay network can be checked if there is a known node (e.g.,
the “owner” or the “creator” of the overlay network) that must be in this
overlay network. Then the node in question simply broadcasts from time
to time short messages containing the current time, a sequence number and
its signature. Any other node can be sure that it is still connected to the
overlay network if it has received such a broadcast not too long ago. This
protocol can be extended to the case of several well-known nodes; for exam-
ple, they all will send such broadcasts, and all other nodes will expect to
receive broadcasts from more than half of the well-known nodes.

In the case of an overlay network used for propagating new blocks (or
just new block headers) of a specific shardchain, a good way for a node to
check connectivity is to keep track of the most recent block received so far.
Because a block is normally generated every five seconds, if no new block
is received for more than, say, thirty seconds, the node probably has been
disconnected from the overlay network.

3.3.15. Streaming broadcast protocol. Finally, there is a streaming
broadcast protocol for TON overlay networks, used, for example, to propa-
gate block candidates among validators of some shardchain (“shardchain task
group”), who, of course, create a private overlay network for that purpose.
The same protocol can be used to propagate new shardchain blocks to all
full nodes for that shardchain.

This protocol has already been outlined in 2.6.10: the new (large) broad-
cast message is split into, say, N one-kilobyte chunks; the sequence of these
chunks is augmented to M ≥ N chunks by means of an erasure code such as
the Reed–Solomon or a fountain code (e.g., the RaptorQ code [9] [14]), and
these M chunks are streamed to all neighbors in ascending chunk number
order. The participating nodes collect these chunks until they can recover
the original large message (one would have to successfully receive at least N
of the chunks for this), and then instruct their neighbors to stop sending new
chunks of the stream, because now these nodes can generate the subsequent
chunks on their own, having a copy of the original message. Such nodes
continue to generate the subsequent chunks of the stream and send them to

96

3.3. Overlay Networks and Multicasting Messages

their neighbors, unless the neighbors in turn indicate that this is no longer
necessary.

In this way, a node does not need to download a large message in its
entirety before propagating it further. This minimizes broadcast latency,
especially when combined with the optimizations described in 3.3.10.

3.3.16. Constructing new overlay networks based on existing ones.
Sometimes one does not want to construct an overlay network from scratch.
Instead, one or several previously existing overlay networks are known, and
the membership of the new overlay network is expected to overlap signifi-
cantly with the combined membership of these overlay networks.

An important example arises when a TON shardchain is split in two, or
two sibling shardchains are merged into one (cf. 2.7). In the first case, the
overlay networks used for propagating new blocks to full nodes must be con-
structed for each of the new shardchains; however, each of these new overlay
networks can be expected to be contained in the block propagation network
of the original shardchain (and comprise approximately half its members).
In the second case, the overlay network for propagating new blocks of the
merged shardchain will consist approximately of the union of members of the
two overlay networks related to the two sibling shardchains being merged.

In such cases, the description of the new overlay network may contain an
explicit or implicit reference to a list of related existing overlay networks. A
node wishing to join the new overlay network may check whether it is already
a member of one of these existing networks, and query its neighbors in these
networks whether they are interested in the new network as well. In case
of a positive answer, new point-to-point channels can be established to such
neighbors, and they can be included in the neighbor list for the new overlay
network.

This mechanism does not totally supplant the general mechanism de-
scribed in 3.3.6 and 3.3.7; rather, both are run in parallel and are used to
populate the neighbor list. This is needed to prevent inadvertent splitting of
the new overlay network into several unconnected subnetworks.

3.3.17. Overlay networks within overlay networks. Another interest-
ing case arises in the implementation of TON Payments (a “lightning net-
work” for instant off-chain value transfers; cf. 5.2). In this case, first an
overlay network containing all transit nodes of the “lightning network” is con-
structed. However, some of these nodes have established payment channels
in the blockchain; they must always be neighbors in this overlay network, in

97

3.3. Overlay Networks and Multicasting Messages

addition to any “random” neighbors selected by the general overlay network
algorithms described in 3.3.6, 3.3.7 and 3.3.8. These “permanent links”
to the neighbors with established payment channels are used to run specific
lightning network protocols, thus effectively creating an overlay subnetwork
(not necessarily connected, if things go awry) inside the encompassing (al-
most always connected) overlay network.

98

4.1. TON Service Implementation Strategies

4 TON Services and Applications
We have discussed the TON Blockchain and TON Networking technologies
at some length. Now we explain some ways in which they can be combined
to create a wide range of services and applications, and discuss some of the
services that will be provided by the TON Project itself, either from the very
beginning or at a later time.

4.1 TON Service Implementation Strategies

We start with a discussion of how different blockchain and network-related
applications and services may be implemented inside the TON ecosystem.
First of all, a simple classification is in order:

4.1.1. Applications and services. We will use the words “application”
and “service” interchangeably. However, there is a subtle and somewhat
vague distinction: an application usually provides some services directly to
human users, while a service is usually exploited by other applications and
services. For example, TON Storage is a service, because it is designed
to keep files on behalf of other applications and services, even though a
human user might use it directly as well. A hypothetical “Facebook in a
blockchain” (cf. 2.9.13) or Telegram messenger, if made available through the
TON Network (i.e., implemented as a “ton-service”; cf. 4.1.6), would rather
be an application, even though some “bots” might access it automatically
without human intervention.

4.1.2. Location of the application: on-chain, off-chain or mixed. A
service or an application designed for the TON ecosystem needs to keep its
data and process that data somewhere. This leads to the following classifi-
cation of applications (and services):

• On-chain applications (cf. 4.1.4): All data and processing are in the
TON Blockchain.

• Off-chain applications (cf. 4.1.5): All data and processing are outside
the TON Blockchain, on servers available through the TON Network.

• Mixed applications (cf. 4.1.7): Some, but not all, data and processing
are in the TON Blockchain; the rest are on off-chain servers available
through the TON Network.

99

4.1. TON Service Implementation Strategies

4.1.3. Centralization: centralized and decentralized, or distributed,
applications. Another classification criterion is whether the application
(or service) relies on a centralized server cluster, or is really “distributed”
(cf. 4.1.9). All on-chain applications are automatically decentralized and
distributed. Off-chain and mixed applications may exhibit different degrees
of centralization.

Now let us consider the above possibilities in more detail.

4.1.4. Pure “on-chain” applications: distributed applications, or
“dapps”, residing in the blockchain. One of the possible approaches,
mentioned in 4.1.2, is to deploy a “distributed application” (commonly ab-
breviated as “dapp”) completely in the TON Blockchain, as one smart con-
tract or a collection of smart contracts. All data will be kept as part of the
permanent state of these smart contracts, and all interaction with the project
will be done by means of (TON Blockchain) messages sent to or received from
these smart contracts.

We have already discussed in 2.9.13 that this approach has its drawbacks
and limitations. It has its advantages, too: such a distributed application
needs no servers to run on or to store its data (it runs “in the blockchain”—
i.e., on the validators’ hardware), and enjoys the blockchain’s extremely high
(Byzantine) reliability and accessibility. The developer of such a distributed
application does not need to buy or rent any hardware; all she needs to do
is develop some software (i.e., the code for the smart contracts). After that,
she will effectively rent the computing power from the validators, and will
pay for it in Grams, either herself or by putting this burden on the shoulders
of her users.

4.1.5. Pure network services: “ton-sites” and “ton-services”. Another
extreme option is to deploy the service on some servers and make it available
to the users through the ADNL protocol described in 3.1, and maybe some
higher level protocol such as the RLDP discussed in 3.1.9, which can be used
to send RPC queries to the service in any custom format and obtain answers
to these queries. In this way, the service will be totally off-chain, and will
reside in the TON Network, almost without using the TON Blockchain.

The TON Blockchain might be used only to locate the abstract address
or addresses of the service, as outlined in 3.2.12, perhaps with the aid of a
service such as the TON DNS (cf. 4.3.1) to facilitate translation of domain-
like human-readable strings into abstract addresses.

100

4.1. TON Service Implementation Strategies

To the extent the ADNL network (i.e., the TON Network) is similar to
the Invisible Internet Project (I2P), such (almost) purely network services
are analogous to the so-called “eep-services” (i.e., services that have an I2P -
address as their entry point, and are available to clients through the I2P
network). We will say that such purely network services residing in the TON
Network are “ton-services”.

An “eep-service” may implement HTTP as its client-server protocol; in
the TON Network context, a “ton-service” might simply use RLDP (cf. 3.1.9)
datagrams to transfer HTTP queries and responses to them. If it uses the
TON DNS to allow its abstract address to be looked up by a human-readable
domain name, the analogy to a web site becomes almost perfect. One might
even write a specialized browser, or a special proxy (“ton-proxy”) that is run
locally on a user’s machine, accepts arbitrary HTTP queries from an ordinary
web browser the user employs (once the local IP address and the TCP port of
the proxy are entered into the browser’s configuration), and forwards these
queries through the TON Network to the abstract address of the service.
Then the user would have a browsing experience similar to that of the World
Wide Web (WWW).

In the I2P ecosystem, such “eep-services” are called “eep-sites”. One can
easily create “ton-sites” in the TON ecosystem as well. This is facilitated
somewhat by the existence of services such as the TON DNS, which exploit
the TON Blockchain and the TON DHT to translate (TON) domain names
into abstract addresses.

4.1.6. Telegram Messenger as a ton-service; MTProto over RLDP.
We would like to mention in passing that the MTProto protocol,33 used by
Telegram Messenger34 for client-server interaction, can be easily embedded
into the RLDP protocol discussed in 3.1.9, thus effectively transforming Tele-
gram into a ton-service. Because the TON Proxy technology can be switched
on transparently for the end user of a ton-site or a ton-service, being imple-
mented on a lower level than the RLDP and ADNL protocols (cf. 3.1.6),
this would make Telegram effectively unblockable. Of course, other mes-
saging and social networking services might benefit from this technology as
well.

4.1.7. Mixed services: partly off-chain, partly on-chain. Some ser-
33https://core.telegram.org/mtproto
34https://telegram.org/

101

https://core.telegram.org/mtproto
https://telegram.org/

4.1. TON Service Implementation Strategies

vices might use a mixed approach: do most of the processing off-chain, but
also have some on-chain part (for example, to register their obligations to-
wards their users, and vice versa). In this way, part of the state would still
be kept in the TON Blockchain (i.e., an immutable public ledger), and any
misbehavior of the service or of its users could be punished by smart con-
tracts.

4.1.8. Example: keeping files off-chain; TON Storage. An example
of such a service is given by TON Storage. In its simplest form, it allows
users to store files off-chain, by keeping on-chain only a hash of the file to be
stored, and possibly a smart contract where some other parties agree to keep
the file in question for a given period of time for a pre-negotiated fee. In fact,
the file may be subdivided into chunks of some small size (e.g., 1 kilobyte),
augmented by an erasure code such as a Reed–Solomon or a fountain code, a
Merkle tree hash may be constructed for the augmented sequence of chunks,
and this Merkle tree hash might be published in the smart contract instead
of or along with the usual hash of the file. This is somewhat reminiscent of
the way files are stored in a torrent.

An even simpler form of storing files is completely off-chain: one might es-
sentially create a “torrent” for a new file, and use TON DHT as a “distributed
torrent tracker” for this torrent (cf. 3.2.10). This might actually work pretty
well for popular files. However, one does not get any availability guarantees.
For example, a hypothetical “blockchain Facebook” (cf. 2.9.13), which would
opt to keep the profile photographs of its users completely off-chain in such
“torrents”, might risk losing photographs of ordinary (not especially popular)
users, or at least risk being unable to present these photographs for prolonged
periods. The TON Storage technology, which is mostly off-chain, but uses
an on-chain smart contract to enforce availability of the stored files, might
be a better match for this task.

4.1.9. Decentralized mixed services, or “fog services”. So far, we have
discussed centralized mixed services and applications. While their on-chain
component is processed in a decentralized and distributed fashion, being
located in the blockchain, their off-chain component relies on some servers
controlled by the service provider in the usual centralized fashion. Instead
of using some dedicated servers, computing power might be rented from a
cloud computing service offered by one of the large companies. However, this
would not lead to decentralization of the off-chain component of the service.

A decentralized approach to implementing the off-chain component of a

102

4.2. Connecting Users and Service Providers

service consists in creating a market, where anybody possessing the required
hardware and willing to rent their computing power or disk space would offer
their services to those needing them.

For example, there might exist a registry (which might also be called a
“market” or an “exchange”) where all nodes interested in keeping files of other
users publish their contact information, along with their available storage
capacity, availability policy, and prices. Those needing these services might
look them up there, and, if the other party agrees, create smart contracts in
the blockchain and upload files for off-chain storage. In this way a service
like TON Storage becomes truly decentralized, because it does not need to
rely on any centralized cluster of servers for storing files.

4.1.10. Example: “fog computing” platforms as decentralized mixed
services. Another example of such a decentralized mixed application arises
when one wants to perform some specific computations (e.g., 3D rendering or
training neural networks), often requiring specific and expensive hardware.
Then those having such equipment might offer their services through a similar
“exchange”, and those needing such services would rent them, with the obli-
gations of the sides registered by means of smart contracts. This is similar to
what “fog computing” platforms, such as Golem (https://golem.network/)
or SONM (https://sonm.io/), promise to deliver.

4.1.11. Example: TON Proxy is a fog service. TON Proxy provides yet
another example of a fog service, where nodes wishing to offer their services
(with or without compensation) as tunnels for ADNL network traffic might
register, and those needing them might choose one of these nodes depending
on the price, latency and bandwidth offered. Afterwards, one might use
payment channels provided by TON Payments for processing micropayments
for the services of those proxies, with payments collected, for instance, for
every 128 KiB transferred.

4.1.12. Example: TON Payments is a fog service. The TON Payments
platform (cf. 5) is also an example of such a decentralized mixed application.

4.2 Connecting Users and Service Providers

We have seen in 4.1.9 that “fog services” (i.e., mixed decentralized services)
will usually need some markets, exchanges or registries, where those needing
specific services might meet those providing them.

103

https://golem.network/
https://sonm.io/

4.2. Connecting Users and Service Providers

Such markets are likely to be implemented as on-chain, off-chain or mixed
services themselves, centralized or distributed.

4.2.1. Example: connecting to TON Payments. For example, if one
wants to use TON Payments (cf. 5), the first step would be to find at least
some existing transit nodes of the “lightning network” (cf. 5.2), and establish
payment channels with them, if they are willing. Some nodes can be found
with the aid of the “encompassing” overlay network, which is supposed to
contain all transit lightning network nodes (cf. 3.3.17). However, it is not
clear whether these nodes will be willing to create new payment channels.
Therefore, a registry is needed where nodes ready to create new links can
publish their contact information (e.g., their abstract addresses).

4.2.2. Example: uploading a file into TON Storage. Similarly, if one
wants to upload a file into the TON Storage, she must locate some nodes
willing to sign a smart contract binding them to keep a copy of that file (or
of any file below a certain size limit, for that matter). Therefore, a registry
of nodes offering their services for storing files is needed.

4.2.3. On-chain, mixed and off-chain registries. Such a registry of
service providers might be implemented completely on-chain, with the aid
of a smart contract which would keep the registry in its permanent storage.
However, this would be quite slow and expensive. A mixed approach is
more efficient, where the relatively small and rarely changed on-chain registry
is used only to point out some nodes (by their abstract addresses, or by
their public keys, which can be used to locate actual abstract addresses as
described in 3.2.12), which provide off-chain (centralized) registry services.

Finally, a decentralized, purely off-chain approach might consist of a
public overlay network (cf. 3.3), where those willing to offer their services,
or those looking to buy somebody’s services, simply broadcast their offers,
signed by their private keys. If the service to be provided is very simple, even
broadcasting the offers might be not necessary: the approximate membership
of the overlay network itself might be used as a “registry” of those willing to
provide a particular service. Then a client requiring this service might lo-
cate (cf. 3.3.7) and query some nodes of this overlay network, and then query
their neighbors, if the nodes already known are not ready to satisfy its needs.

4.2.4. Registry or exchange in a side-chain. Another approach to im-
plementing decentralized mixed registries consists in creating an indepen-

104

4.3. Accessing TON Services

dent specialized blockchain (“side-chain”), maintained by its own set of self-
proclaimed validators, who publish their identities in an on-chain smart con-
tract and provide network access to all interested parties to this specialized
blockchain, collecting transaction candidates and broadcasting block updates
through dedicated overlay networks (cf. 3.3). Then any full node for this
sidechain can maintain its own copy of the shared registry (essentially equal
to the global state of this side-chain), and process arbitrary queries related
to this registry.

4.2.5. Registry or exchange in a workchain. Another option is to
create a dedicated workchain inside the TON Blockchain, specialized for
creating registries, markets and exchanges. This might be more efficient and
less expensive than using smart contracts residing in the basic workchain
(cf. 2.1.11). However, this would still be more expensive than maintaining
registries in side-chains (cf. 4.2.4).

4.3 Accessing TON Services

We have discussed in 4.1 the different approaches one might employ for
creating new services and applications residing in the TON ecosystem. Now
we discuss how these services might be accessed, and some of the “helper
services” that will be provided by TON, including TON DNS and TON
Storage.

4.3.1. TON DNS: a mostly on-chain hierarchical domain name ser-
vice. The TON DNS is a predefined service, which uses a collection of smart
contracts to keep a map from human-readable domain names to (256-bit) ad-
dresses of ADNL network nodes and TON Blockchain accounts and smart
contracts.

While anybody might in principle implement such a service using the
TON Blockchain, it is useful to have such a predefined service with a well-
known interface, to be used by default whenever an application or a service
wants to translate human-readable identifiers into addresses.

4.3.2. TON DNS use cases. For example, a user looking to transfer some
cryptocurrency to another user or to a merchant may prefer to remember a
TON DNS domain name of the account of that user or merchant, instead of
keeping their 256-bit account identifiers at hand and copy-pasting them into
the recipient field in their light wallet client.

105

4.3. Accessing TON Services

Similarly, TON DNS may be used to locate account identifiers of smart
contracts or entry points of ton-services and ton-sites (cf. 4.1.5), enabling
a specialized client (“ton-browser”), or a usual internet browser combined
with a specialized ton-proxy extension or stand-alone application, to deliver
a WWW-like browsing experience to the user.

4.3.3. TON DNS smart contracts. The TON DNS is implemented by
means of a tree of special (DNS) smart contracts. Each DNS smart contract
is responsible for registering subdomains of some fixed domain. The “root”
DNS smart contract, where level one domains of the TON DNS system will be
kept, is located in the masterchain. Its account identifier must be hardcoded
into all software that wishes to access the TON DNS database directly.

Any DNS smart contract contains a hashmap, mapping variable-length
null-terminated UTF-8 strings into their “values”. This hashmap is imple-
mented as a binary Patricia tree, similar to that described in 2.3.7 but
supporting variable-length bitstrings as keys.

4.3.4. Values of the DNS hashmap, or TON DNS records. As to the
values, they are “TON DNS records” described by a TL-scheme (cf. 2.2.5).
They consist of a “magic number”, selecting one of the options supported,
and then either an account identifier, or a smart-contract identifier, or an
abstract network address (cf. 3.1), or a public key used to locate abstract
addresses of a service (cf. 3.2.12), or a description of an overlay network,
and so on. An important case is that of another DNS smart contract: in such
a case, that smart contract is used to resolve subdomains of its domain. In
this way, one can create separate registries for different domains, controlled
by the owners of those domains.

These records may also contain an expiration time, a caching time (usu-
ally very large, because updating values in a blockchain too often is expen-
sive), and in most cases a reference to the owner of the subdomain in question.
The owner has the right to change this record (in particular, the owner field,
thus transferring the domain to somebody else’s control), and to prolong it.

4.3.5. Registering new subdomains of existing domains. In order to
register a new subdomain of an existing domain, one simply sends a message
to the smart contract, which is the registrar of that domain, containing the
subdomain (i.e., the key) to be registered, the value in one of several prede-
fined formats, an identity of the owner, an expiration date, and some amount
of cryptocurrency as determined by the domain’s owner.

106

4.3. Accessing TON Services

Subdomains are registered on a “first-come, first-served” basis.

4.3.6. Retrieving data from a DNS smart contract. In principle,
any full node for the masterchain or shardchain containing a DNS smart
contract might be able to look up any subdomain in the database of that
smart contract, if the structure and the location of the hashmap inside the
persistent storage of the smart contract are known.

However, this approach would work only for certain DNS smart contracts.
It would fail miserably if a non-standard DNS smart contract were used.

Instead, an approach based on general smart contract interfaces and get
methods (cf. 4.3.11) is used. Any DNS smart contract must define a “get
method” with a “known signature”, which is invoked to look up a key. Since
this approach makes sense for other smart contracts as well, especially those
providing on-chain and mixed services, we explain it in some detail in 4.3.11.

4.3.7. Translating a TON DNS domain. Once any full node, acting by
itself or on behalf of some light client, can look up entries in the database
of any DNS smart contract, arbitrary TON DNS domain names can be re-
cursively translated, starting from the well-known and fixed root DNS smart
contract (account) identifier.

For example, if one wants to translate A.B.C, one looks up keys .C, .B.C,
and A.B.C in the root domain database. If the first of them is not found, but
the second is, and its value is a reference to another DNS smart contract,
then A is looked up in the database of that smart contract and the final value
is retrieved.

4.3.8. Translating TON DNS domains for light nodes. In this way,
a full node for the masterchain—and also for all shardchains involved in the
domain look-up process—might translate any domain name into its current
value without external help. A light node might request a full node to do this
on its behalf and return the value, along with a Merkle proof (cf. 2.5.11).
This Merkle proof would enable the light node to verify that the answer is
correct, so such TON DNS responses cannot be “spoofed” by a malicious
interceptor, in contrast to the usual DNS protocol.

Because no node can be expected to be a full node with respect to all
shardchains, actual TON DNS domain translation would involve a combina-
tion of these two strategies.

4.3.9. Dedicated “TON DNS servers”. One might provide a simple
“TON DNS server”, which would receive RPC “DNS” queries (e.g., via the

107

4.3. Accessing TON Services

ADNL or RLDP protocols described in 3.1), requesting that the server trans-
late a given domain, process these queries by forwarding some subqueries to
other (full) nodes if necessary, and return answers to the original queries,
augmented by Merkle proofs if required.

Such “DNS servers” might offer their services (for free or not) to any other
nodes and especially light clients, using one of the methods described in 4.2.
Notice that these servers, if considered part of the TON DNS service, would
effectively transform it from a distributed on-chain service into a distributed
mixed service (i.e., a “fog service”).

This concludes our brief overview of the TON DNS service, a scalable
on-chain registry for human-readable domain names of TON Blockchain and
TON Network entities.

4.3.10. Accessing data kept in smart contracts. We have already seen
that it is sometimes necessary to access data stored in a smart contract
without changing its state.

If one knows the details of the smart-contract implementation, one can
extract all the needed information from the smart contract’s persistent stor-
age, available to all full nodes of the shardchain the smart contract resides
in. However, this is quite an inelegant way of doing things, depending very
much on the smart-contract implementation.

4.3.11. “Get methods” of smart contracts. A better way would be to
define some get methods in the smart contract, that is, some types of inbound
messages that do not affect the state of the smart contract when delivered,
but generate one or more output messages containing the “result” of the get
method. In this way, one can obtain data from a smart contract, knowing
only that it implements a get method with a known signature (i.e., a known
format of the inbound message to be sent and outbound messages to be
received as a result).

This way is much more elegant and in line with object oriented program-
ming (OOP). However, it has an obvious defect so far: one must actually
commit a transaction into the blockchain (sending the get message to the
smart contract), wait until it is committed and processed by the validators,
extract the answer from a new block, and pay for gas (i.e., for executing the
get method on the validators’ hardware). This is a waste of resources: get
methods do not change the state of the smart contract anyways, so they need
not be executed in the blockchain.

108

4.3. Accessing TON Services

4.3.12. Tentative execution of get methods of smart contracts. We
have already remarked (cf. 2.4.6) that any full node can tentatively exe-
cute any method of any smart contract (i.e., deliver any message to a smart
contract), starting from a given state of the smart contract, without actually
committing the corresponding transaction. The full node can simply load the
code of the smart contract under consideration into the TON VM, initialize
its persistent storage from the global state of the shardchain (known to all
full nodes of the shardchain), and execute the smart-contract code with the
inbound message as its input parameter. The output messages created will
yield the result of this computation.

In this way, any full node can evaluate arbitrary get methods of arbitrary
smart contracts, provided their signature (i.e., the format of inbound and
outbound messages) is known. The node may keep track of the cells of the
shardchain state accessed during this evaluation, and create a Merkle proof
of the validity of the computation performed, for the benefit of a light node
that might have asked the full node to do so (cf. 2.5.11).

4.3.13. Smart-contract interfaces in TL-schemes. Recall that the
methods implemented by a smart contract (i.e., the input messages accepted
by it) are essentially some TL-serialized objects, which can be described by
a TL-scheme (cf. 2.2.5). The resulting output messages can be described by
the same TL-scheme as well. In this way, the interface provided by a smart
contract to other accounts and smart contracts may be formalized by means
of a TL-scheme.

In particular, (a subset of) get methods supported by a smart contract
can be described by such a formalized smart-contract interface.

4.3.14. Public interfaces of a smart contract. Notice that a formalized
smart-contract interface, either in form of a TL-scheme (represented as a TL
source file; cf. 2.2.5) or in serialized form,35 can be published—for example,
in a special field in the smart-contract account description, stored in the
blockchain, or separately, if this interface will be referred to many times. In
the latter case a hash of the supported public interface may be incorporated
into the smart-contract description instead of the interface description itself.

An example of such a public interface is that of a DNS smart contract,
which is supposed to implement at least one standard get method for looking

35TL-schemes can be TL-serialized themselves; cf. https://core.telegram.org/
mtproto/TL-tl.

109

https://core.telegram.org/mtproto/TL-tl
https://core.telegram.org/mtproto/TL-tl

4.3. Accessing TON Services

up subdomains (cf. 4.3.6). A standard method for registering new subdo-
mains can be also included in the standard public interface of DNS smart
contracts.

4.3.15. User interface of a smart contract. The existence of a public
interface for a smart contract has other benefits, too. For example, a wallet
client application may download such an interface while examining a smart
contract on the request of a user, and display a list of public methods (i.e.,
of available actions) supported by the smart contract, perhaps with some
human-readable comments if any are provided in the formal interface. After
the user selects one of these methods, a form may be automatically generated
according to the TL-scheme, where the user will be prompted for all fields
required by the chosen method and for the desired amount of cryptocurrency
(e.g., Grams) to be attached to this request. Submitting this form will create
a new blockchain transaction containing the message just composed, sent
from the user’s blockchain account.

In this way, the user will be able to interact with arbitrary smart contracts
from the wallet client application in a user-friendly way by filling and sub-
mitting certain forms, provided these smart contracts have published their
interfaces.

4.3.16. User interface of a “ton-service”. It turns out that “ton-services”
(i.e., services residing in the TON Network and accepting queries through
the ADNL and RLDP protocols of 3; cf. 4.1.5) may also profit from having
public interfaces, described by TL-schemes (cf. 2.2.5). A client application,
such as a light wallet or a “ton-browser”, might prompt the user to select one
of the methods and to fill in a form with parameters defined by the interface,
similarly to what has just been discussed in 4.3.15. The only difference is
that the resulting TL-serialized message is not submitted as a transaction in
the blockchain; instead, it is sent as an RPC query to the abstract address
of the “ton-service” in question, and the response to this query is parsed and
displayed according to the formal interface (i.e., a TL-scheme).

4.3.17. Locating user interfaces via TON DNS. The TON DNS record
containing an abstract address of a ton-service or a smart-contract account
identifier might also contain an optional field describing the public (user)
interface of that entity, or several supported interfaces. Then the client
application (be it a wallet, a ton-browser or a ton-proxy) will be able to
download the interface and interact with the entity in question (be it a smart

110

4.3. Accessing TON Services

contract or a ton-service) in a uniform way.

4.3.18. Blurring the distinction between on-chain and off-chain ser-
vices. In this way, the distinction between on-chain, off-chain and mixed
services (cf. 4.1.2) is blurred for the end user: she simply enters the domain
name of the desired service into the address line of her ton-browser or wallet,
and the rest is handled seamlessly by the client application.

4.3.19. A light wallet and TON entity explorer can be built into
Telegram Messenger clients. An interesting opportunity arises at this
point. A light wallet and TON entity explorer, implementing the above
functionality, can be embedded into the Telegram Messenger smartphone
client application, thus bringing the technology to more than 200 million
people. Users would be able to send hyperlinks to TON entities and resources
by including TON URIs (cf. 4.3.22) in messages; such hyperlinks, if selected,
will be opened internally by the Telegram client application of the receiving
party, and interaction with the chosen entity will begin.

4.3.20. “ton-sites” as ton-services supporting an HTTP interface.
A ton-site is simply a ton-service that supports an HTTP interface, perhaps
along with some other interfaces. This support may be announced in the
corresponding TON DNS record.

4.3.21. Hyperlinks. Notice that the HTML pages returned by ton-sites
may contain ton-hyperlinks—that is, references to other ton-sites, smart con-
tracts and accounts by means of specially crafted URI schemes (cf. 4.3.22)—
containing either abstract network addresses, account identifiers, or human-
readable TON DNS domains. Then a “ton-browser” might follow such a
hyperlink when the user selects it, detect the interface to be used, and dis-
play a user interface form as outlined in 4.3.15 and 4.3.16.

4.3.22. Hyperlink URLs may specify some parameters. The hyperlink
URLs may contain not only a (TON) DNS domain or an abstract address of
the service in question, but also the name of the method to be invoked and
some or all of its parameters. A possible URI scheme for this might look as
follows:

ton://<domain>/<method>?<field1>=<value1>&<field2>=. . .

When the user selects such a link in a ton-browser, either the action is per-
formed immediately (especially if it is a get method of a smart contract,

111

4.3. Accessing TON Services

invoked anonymously), or a partially filled form is displayed, to be explic-
itly confirmed and submitted by the user (this may be required for payment
forms).

4.3.23. POST actions. A ton-site may embed into the HTML pages it
returns some usual-looking POST forms, with POST actions referring ei-
ther to ton-sites, ton-services or smart contracts by means of suitable (TON)
URLs. In that case, once the user fills and submits that custom form, the
corresponding action is taken, either immediately or after an explicit confir-
mation.

4.3.24. TON WWW. All of the above will lead to the creation of a whole
web of cross-referencing entities, residing in the TON Network, which would
be accessible to the end user through a ton-browser, providing the user with
a WWW-like browsing experience. For end users, this will finally make
blockchain applications fundamentally similar to the web sites they are al-
ready accustomed to.

4.3.25. Advantages of TON WWW. This “TON WWW” of on-chain
and off-chain services has some advantages over its conventional counterpart.
For example, payments are inherently integrated in the system. User identity
can be always presented to the services (by means of automatically generated
signatures on the transactions and RPC requests generated), or hidden at
will. Services would not need to check and re-check user credentials; these
credentials can be published in the blockchain once and for all. User network
anonymity can be easily preserved by means of TON Proxy, and all services
will be effectively unblockable. Micropayments are also possible and easy,
because ton-browsers can be integrated with the TON Payments system.

112

5.1. Payment Channels

5 TON Payments
The last component of the TON Project we will briefly discuss in this text
is TON Payments, the platform for (micro)payment channels and “lightning
network” value transfers. It would enable “instant” payments, without the
need to commit all transactions into the blockchain, pay the associated trans-
action fees (e.g., for the gas consumed), and wait five seconds until the block
containing the transactions in question is confirmed.

The overall overhead of such instant payments is so small that one can
use them for micropayments. For example, a TON file-storing service might
charge the user for every 128 KiB of downloaded data, or a paid TON Proxy
might require some tiny micropayment for every 128 KiB of traffic relayed.

While TON Payments is likely to be released later than the core compo-
nents of the TON Project, some considerations need to be made at the very
beginning. For example, the TON Virtual Machine (TON VM; cf. 2.1.20),
used to execute the code of TON Blockchain smart contracts, must support
some special operations with Merkle proofs. If such support is not present
in the original design, adding it at a later stage might become problematic
(cf. 2.8.16). We will see, however, that the TON VM comes with natural
support for “smart” payment channels (cf. 5.1.9) out of the box.

5.1 Payment Channels

We start with a discussion of point-to-point payment channels, and how they
can be implemented in the TON Blockchain.

5.1.1. The idea of a payment channel. Suppose two parties, A and B,
know that they will need to make a lot of payments to each other in the future.
Instead of committing each payment as a transaction in the blockchain, they
create a shared “money pool” (or perhaps a small private bank with exactly
two accounts), and contribute some funds to it: A contributes a coins, and
B contributes b coins. This is achieved by creating a special smart contract
in the blockchain, and sending the money to it.

Before creating the “money pool”, the two sides agree to a certain protocol.
They will keep track of the state of the pool—that is, of their balances in
the shared pool. Originally, the state is (a, b), meaning that a coins actually
belong to A, and b coins belong to B. Then, if A wants to pay d coins
to B, they can simply agree that the new state is (a′, b′) = (a − d, b + d).

113

5.1. Payment Channels

Afterwards, if, say, B wants to pay d′ coins to A, the state will become
(a′′, b′′) = (a′ + d′, b′ − d′), and so on.

All this updating of balances inside the pool is done completely off-chain.
When the two parties decide to withdraw their due funds from the pool, they
do so according to the final state of the pool. This is achieved by sending a
special message to the smart contract, containing the agreed-upon final state
(a∗, b∗) along with the signatures of both A and B. Then the smart contract
sends a∗ coins to A, b∗ coins to B and self-destructs.

This smart contract, along with the network protocol used by A and B to
update the state of the pool, is a simple payment channel between A and B.
According to the classification described in 4.1.2, it is amixed service: part of
its state resides in the blockchain (the smart contract), but most of its state
updates are performed off-chain (by the network protocol). If everything
goes well, the two parties will be able to perform as many payments to each
other as they want (with the only restriction being that the “capacity” of
the channel is not overrun—i.e., their balances in the payment channel both
remain non-negative), committing only two transactions into the blockchain:
one to open (create) the payment channel (smart contract), and another to
close (destroy) it.

5.1.2. Trustless payment channels. The previous example was somewhat
unrealistic, because it assumes that both parties are willing to cooperate and
will never cheat to gain some advantage. Imagine, for example, that A will
choose not to sign the final balance (a′, b′) with a′ < a. This would put B in
a difficult situation.

To protect against such scenarios, one usually tries to develop trustless
payment channel protocols, which do not require the parties to trust each
other, and make provisions for punishing any party who would attempt to
cheat.

This is usually achieved with the aid of signatures. The payment channel
smart contract knows the public keys of A and B, and it can check their
signatures if needed. The payment channel protocol requires the parties to
sign the intermediate states and send the signatures to each other. Then,
if one of the parties cheats—for instance, pretends that some state of the
payment channel never existed—its misbehavior can be proved by showing
its signature on that state. The payment channel smart contract acts as
an “on-chain arbiter”, able to process complaints of the two parties about
each other, and punish the guilty party by confiscating all of its money and

114

5.1. Payment Channels

awarding it to the other party.

5.1.3. Simple bidirectional synchronous trustless payment channel.
Consider the following, more realistic example: Let the state of the payment
channel be described by triple (δi, i, oi), where i is the sequence number of the
state (it is originally zero, and then it is increased by one when a subsequent
state appears), δi is the channel imbalance (meaning that A and B own a+δi
and b − δi coins, respectively), and oi is the party allowed to generate the
next state (either A or B). Each state must be signed both by A and B
before any further progress can be made.

Now, if A wants to transfer d coins to B inside the payment channel, and
the current state is Si = (δi, i, oi) with oi = A, then it simply creates a new
state Si+1 = (δi − d, i + 1, oi+1), signs it, and sends it to B along with its
signature. Then B confirms it by signing and sending a copy of its signature
to A. After that, both parties have a copy of the new state with both of their
signatures, and a new transfer may occur.

If A wants to transfer coins to B in a state Si with oi = B, then it first
asks B to commit a subsequent state Si+1 with the same imbalance δi+1 = δi,
but with oi+1 = A. After that, A will be able to make its transfer.

When the two parties agree to close the payment channel, they both put
their special final signatures on the state Sk they believe to be final, and
invoke the clean or two-sided finalization method of the payment channel
smart contract by sending it the final state along with both final signatures.

If the other party does not agree to provide its final signature, or simply if
it stops responding, it is possible to close the channel unilaterally. For this,
the party wishing to do so will invoke the unilateral finalization method,
sending to the smart contract its version of the final state, its final signature,
and the most recent state having a signature of the other party. After that,
the smart contract does not immediately act on the final state received.
Instead, it waits for a certain period of time (e.g., one day) for the other party
to present its version of the final state. When the other party submits its
version and it turns out to be compatible with the already submitted version,
the “true” final state is computed by the smart contract and used to distribute
the money accordingly. If the other party fails to present its version of the
final state to the smart contract, then the money is redistributed according
to the only copy of the final state presented.

If one of the two parties cheats—for example, by signing two different
states as final, or by signing two different next states Si+1 and S ′i+1, or by

115

5.1. Payment Channels

signing an invalid new state Si+1 (e.g., with imbalance δi+1 < −a or > b)—
then the other party may submit proof of this misbehavior to a third method
of the smart contract. The guilty party is punished immediately by losing
its share in the payment channel completely.

This simple payment channel protocol is fair in the sense that any party
can always get its due, with or without the cooperation of the other party,
and is likely to lose all of its funds committed to the payment channel if it
tries to cheat.

5.1.4. Synchronous payment channel as a simple virtual blockchain
with two validators. The above example of a simple synchronous payment
channel can be recast as follows. Imagine that the sequence of states S0,
S1, . . . , Sn is actually the sequence of blocks of a very simple blockchain.
Each block of this blockchain contains essentially only the current state of
the blockchain, and maybe a reference to the previous block (i.e., its hash).
Both parties A and B act as validators for this blockchain, so every block
must collect both of their signatures. The state Si of the blockchain defines
the designated producer oi for the next block, so there is no race between A
and B for producing the next block. Producer A is allowed to create blocks
that transfer funds from A to B (i.e., decrease the imbalance: δi+1 ≤ δi), and
B can only transfer funds from B to A (i.e., increase δ).

If the two validators agree on the final block (and the final state) of the
blockchain, it is finalized by collecting special “final” signatures of the two
parties, and submitting them along with the final block to the channel smart
contract for processing and re-distributing the money accordingly.

If a validator signs an invalid block, or creates a fork, or signs two different
final blocks, it can be punished by presenting a proof of its misbehavior to
the smart contract, which acts as an “on-chain arbiter” for the two validators;
then the offending party will lose all its money kept in the payment channel,
which is analogous to a validator losing its stake.

5.1.5. Asynchronous payment channel as a virtual blockchain with
two workchains. The synchronous payment channel discussed in 5.1.3
has a certain disadvantage: one cannot begin the next transaction (money
transfer inside the payment channel) before the previous one is confirmed by
the other party. This can be fixed by replacing the single virtual blockchain
discussed in 5.1.4 by a system of two interacting virtual workchains (or rather
shardchains).

116

5.1. Payment Channels

The first of these workchains contains only transactions by A, and its
blocks can be generated only by A; its states are Si = (i, φi, j, ψj), where
i is the block sequence number (i.e., the count of transactions, or money
transfers, performed by A so far), φi is the total amount transferred from A
to B so far, j is the sequence number of the most recent valid block in B’s
blockchain that A is aware of, and ψj is the amount of money transferred
from B to A in its j transactions. A signature of B put onto its j-th block
should also be a part of this state. Hashes of the previous block of this
workchain and of the j-th block of the other workchain may be also included.
Validity conditions for Si include φi ≥ 0, φi ≥ φi−1 if i > 0, ψj ≥ 0, and
−a ≤ ψj − φi ≤ b.

Similarly, the second workchain contains only transactions by B, and its
blocks are generated only by B; its states are Tj = (j, ψj, i, φi), with similar
validity conditions.

Now, if A wants to transfer some money to B, it simply creates a new
block in its workchain, signs it, and sends to B, without waiting for confir-
mation.

The payment channel is finalized by A signing (its version of) the final
state of its blockchain (with its special “final signature”), B signing the fi-
nal state of its blockchain, and presenting these two final states to the clean
finalization method of the payment channel smart contract. Unilateral final-
ization is also possible, but in that case the smart contract will have to wait
for the other party to present its version of the final state, at least for some
grace period.

5.1.6. Unidirectional payment channels. If only A needs to make pay-
ments to B (e.g., B is a service provider, and A its client), then a unilateral
payment channel can be created. Essentially, it is just the first workchain
described in 5.1.5 without the second one. Conversely, one can say that
the asynchronous payment channel described in 5.1.5 consists of two unidi-
rectional payment channels, or “half-channels”, managed by the same smart
contract.

5.1.7. More sophisticated payment channels. Promises. We will see
later in 5.2.4 that the “lightning network” (cf. 5.2), which enables instant
money transfers through chains of several payment channels, requires higher
degrees of sophistication from the payment channels involved.

In particular, we want to be able to commit “promises”, or “conditional
money transfers”: A agrees to send c coins to B, but B will get the money

117

5.1. Payment Channels

only if a certain condition is fulfilled, for instance, if B can present some
string u with Hash(u) = v for a known value of v. Otherwise, A can get the
money back after a certain period of time.

Such a promise could easily be implemented on-chain by a simple smart
contract. However, we want promises and other kinds of conditional money
transfers to be possible off-chain, in the payment channel, because they con-
siderably simplify money transfers along a chain of payment channels existing
in the “lightning network” (cf. 5.2.4).

The “payment channel as a simple blockchain” picture outlined in 5.1.4
and 5.1.5 becomes convenient here. Now we consider a more complicated vir-
tual blockchain, the state of which contains a set of such unfulfilled “promises”,
and the amount of funds locked in such promises. This blockchain—or the
two workchains in the asynchronous case—will have to refer explicitly to
the previous blocks by their hashes. Nevertheless, the general mechanism
remains the same.

5.1.8. Challenges for the sophisticated payment channel smart con-
tracts. Notice that, while the final state of a sophisticated payment channel
is still small, and the “clean” finalization is simple (if the two sides have
agreed on their amounts due, and both have signed their agreement, nothing
else remains to be done), the unilateral finalization method and the method
for punishing fraudulent behavior need to be more complex. Indeed, they
must be able to accept Merkle proofs of misbehavior, and to check whether
the more sophisticated transactions of the payment channel blockchain have
been processed correctly.

In other words, the payment channel smart contract must be able to
work with Merkle proofs, to check their “hash validity”, and must contain
an implementation of ev_trans and ev_block functions (cf. 2.2.6) for the
payment channel (virtual) blockchain.

5.1.9. TON VM support for “smart” payment channels. The TON
VM, used to run the code of TON Blockchain smart contracts, is up to the
challenge of executing the smart contracts required for “smart”, or sophisti-
cated, payment channels (cf. 5.1.8).

At this point the “everything is a bag of cells” paradigm (cf. 2.5.14) be-
comes extremely convenient. Since all blocks (including the blocks of the
ephemeral payment channel blockchain) are represented as bags of cells (and
described by some algebraic data types), and the same holds for messages
and Merkle proofs as well, a Merkle proof can easily be embedded into an

118

5.1. Payment Channels

inbound message sent to the payment channel smart contract. The “hash
condition” of the Merkle proof will be checked automatically, and when the
smart contract accesses the “Merkle proof” presented, it will work with it
as if it were a value of the corresponding algebraic data type—albeit incom-
plete, with some subtrees of the tree replaced by special nodes containing the
Merkle hash of the omitted subtree. Then the smart contract will work with
that value, which might represent, for instance, a block of the payment chan-
nel (virtual) blockchain along with its state, and will evaluate the ev_block
function (cf. 2.2.6) of that blockchain on this block and the previous state.
Then either the computation finishes, and the final state can be compared
with that asserted in the block, or an “absent node” exception is thrown while
attempting to access an absent subtree, indicating that the Merkle proof is
invalid.

In this way, the implementation of the verification code for smart pay-
ment channel blockchains turns out to be quite straightforward using TON
Blockchain smart contracts. One might say that the TON Virtual Ma-
chine comes with built-in support for checking the validity of other simple
blockchains. The only limiting factor is the size of the Merkle proof to be
incorporated into the inbound message to the smart contract (i.e., into the
transaction).

5.1.10. Simple payment channel within a smart payment channel.
We would like to discuss the possibility of creating a simple (synchronous or
asynchronous) payment channel inside an existing payment channel.

While this may seem somewhat convoluted, it is not much harder to un-
derstand and implement than the “promises” discussed in 5.1.7. Essentially,
instead of promising to pay c coins to the other party if a solution to some
hash problem is presented, A promises to pay up to c coins to B according
to the final settlement of some other (virtual) payment channel blockchain.
Generally speaking, this other payment channel blockchain need not even be
between A and B; it might involve some other parties, say, C and D, will-
ing to commit c and d coins into their simple payment channel, respectively.
(This possibility is exploited later in 5.2.5.)

If the encompassing payment channel is asymmetric, two promises need
to be committed into the two workchains: A will promise to pay −δ coins
to B if the final settlement of the “internal” simple payment channel yields
a negative final imbalance δ with 0 ≤ −δ ≤ c; and B will have to promise
to pay δ to A if δ is positive. On the other hand, if the encompassing

119

5.2. Payment Channel Network, or “Lightning Network”

payment channel is symmetric, this can be done by committing a single
“simple payment channel creation” transaction with parameters (c, d) into
the single payment channel blockchain by A (which would freeze c coins
belonging to A), and then committing a special “confirmation transaction”
by B (which would freeze d coins of B).

We expect the internal payment channel to be extremely simple (e.g., the
simple synchronous payment channel discussed in 5.1.3), to minimize the
size of Merkle proofs to be submitted. The external payment channel will
have to be “smart” in the sense described in 5.1.7.

5.2 Payment Channel Network, or “Lightning Network”

Now we are ready to discuss the “lightning network” of TON Payments that
enables instant money transfers between any two participating nodes.

5.2.1. Limitations of payment channels. A payment channel is useful for
parties who expect a lot of money transfers between them. However, if one
needs to transfer money only once or twice to a particular recipient, creating
a payment channel with her would be impractical. Among other things, this
would imply freezing a significant amount of money in the payment channel,
and would require at least two blockchain transactions anyway.

5.2.2. Payment channel networks, or “lightning networks”. Payment
channel networks overcome the limitations of payment channels by enabling
money transfers along chains of payment channels. If A wants to transfer
money to E, she does not need to establish a payment channel with E. It
would be sufficient to have a chain of payment channels linking A with E
through several intermediate nodes—say, four payment channels: from A to
B, from B to C, from C to D and from D to E.

5.2.3. Overview of payment channel networks. Recall that a payment
channel network, known also as a “lightning network”, consists of a collection
of participating nodes, some of which have established long-lived payment
channels between them. We will see in a moment that these payment channels
will have to be “smart” in the sense of 5.1.7. When a participating node A
wants to transfer money to any other participating node E, she tries to find
a path linking A to E inside the payment channel network. When such a
path is found, she performs a “chain money transfer” along this path.

120

5.2. Payment Channel Network, or “Lightning Network”

5.2.4. Chain money transfers. Suppose that there is a chain of payment
channels from A to B, from B to C, from C to D, and from D to E. Suppose,
further, that A wants to transfer x coins to E.

A simplistic approach would be to transfer x coins to B along the existing
payment channel, and ask him to forward the money further to C. However,
it is not evident why B would not simply take the money for himself. There-
fore, one must employ a more sophisticated approach, not requiring all parties
involved to trust each other.

This can be achieved as follows. A generates a large random number u
and computes its hash v = Hash(u). Then she creates a promise to pay
x coins to B if a number u with hash v is presented (cf. 5.1.7), inside her
payment channel with B. This promise contains v, but not u, which is still
kept secret.

After that, B creates a similar promise to C in their payment channel. He
is not afraid to give such a promise, because he is aware of the existence of a
similar promise given to him by A. If C ever presents a solution of the hash
problem to collect x coins promised by B, then B will immediately submit
this solution to A to collect x coins from A.

Then similar promises of C to D and of D to E are created. When
the promises are all in place, A triggers the transfer by communicating the
solution u to all parties involved—or just to E.

Some minor details are omitted in this description. For example, these
promises must have different expiration times, and the amount promised
might slightly differ along the chain (B might promise only x − ε coins to
C, where ε is a small pre-agreed transit fee). We ignore such details for the
time being, because they are not too relevant for understanding how payment
channels work and how they can be implemented in TON.

5.2.5. Virtual payment channels inside a chain of payment channels.
Now suppose that A and E expect to make a lot of payments to each other.
They might create a new payment channel between them in the blockchain,
but this would still be quite expensive, because some funds would be locked in
this payment channel. Another option would be to use chain money transfers
described in 5.2.4 for each payment. However, this would involve a lot of
network activity and a lot of transactions in the virtual blockchains of all
payment channels involved.

An alternative is to create a virtual payment channel inside the chain
linking A to E in the payment channel network. For this, A and E create

121

5.2. Payment Channel Network, or “Lightning Network”

a (virtual) blockchain for their payments, as if they were going to create a
payment channel in the blockchain. However, instead of creating a payment
channel smart contract in the blockchain, they ask all intermediate payment
channels—those linking A to B, B to C, etc.—to create simple payment
channels inside them, bound to the virtual blockchain created by A and E
(cf. 5.1.10). In other words, now a promise to transfer money according
to the final settlement between A and E exists inside every intermediate
payment channel.

If the virtual payment channel is unidirectional, such promises can be
implemented quite easily, because the final imbalance δ is going to be non-
positive, so simple payment channels can be created inside intermediate pay-
ment channels in the same order as described in 5.2.4. Their expiration
times can also be set in the same way.

If the virtual payment channel is bidirectional, the situation is slightly
more complicated. In that case, one should split the promise to transfer δ
coins according to the final settlement into two half-promises, as explained
in 5.1.10: to transfer δ− = max(0,−δ) coins in the forward direction, and to
transfer δ+ = max(0, δ) in the backward direction. These half-promises can
be created in the intermediate payment channels independently, one chain
of half-promises in the direction from A to E, and the other chain in the
opposite direction.

5.2.6. Finding paths in the lightning network. One point remains
undiscussed so far: how will A and E find a path connecting them in the
payment network? If the payment network is not too large, an OSPF-like
protocol can be used: all nodes of the payment network create an overlay
network (cf. 3.3.17), and then every node propagates all available link (i.e.,
participating payment channel) information to its neighbors by a gossip pro-
tocol. Ultimately, all nodes will have a complete list of all payment channels
participating in the payment network, and will be able to find the shortest
paths by themselves—for example, by applying a version of Dijkstra’s algo-
rithm modified to take into account the “capacities” of the payment channels
involved (i.e., the maximal amounts that can be transferred along them).
Once a candidate path is found, it can be probed by a special ADNL data-
gram containing the full path, and asking each intermediate node to confirm
the existence of the payment channel in question, and to forward this data-
gram further according to the path. After that, a chain can be constructed,
and a protocol for chain transfers (cf. 5.2.4), or for creating a virtual payment

122

5.2. Payment Channel Network, or “Lightning Network”

channel inside a chain of payment channels (cf. 5.2.5), can be run.

5.2.7. Optimizations. Some optimizations might be done here. For exam-
ple, only transit nodes of the lightning network need to participate in the
OSPF-like protocol discussed in 5.2.6. Two “leaf” nodes wishing to connect
through the lightning network would communicate to each other the lists of
transit nodes they are connected to (i.e., with which they have established
payment channels participating in the payment network). Then paths con-
necting transit nodes from one list to transit nodes from the other list can
be inspected as outlined above in 5.2.6.

5.2.8. Conclusion. We have outlined how the blockchain and network
technologies of the TON project are adequate to the task of creating TON
Payments, a platform for off-chain instant money transfers and micropay-
ments. This platform can be extremely useful for services residing in the
TON ecosystem, allowing them to easily collect micropayments when and
where required.

123

Conclusion

Conclusion
We have proposed a scalable multi-blockchain architecture capable of sup-
porting a massively popular cryptocurrency and decentralized applications
with user-friendly interfaces.

To achieve the necessary scalability, we proposed the TON Blockchain,
a “tightly-coupled” multi-blockchain system (cf. 2.8.14) with bottom-up ap-
proach to sharding (cf. 2.8.12 and 2.1.2). To further increase potential per-
formance, we introduced the 2-blockchain mechanism for replacing invalid
blocks (cf. 2.1.17) and Instant Hypercube Routing for faster communication
between shards (cf. 2.4.20). A brief comparison of the TON Blockchain to
existing and proposed blockchain projects (cf. 2.8 and 2.9) highlights the
benefits of this approach for systems that seek to handle millions of transac-
tions per second.

The TON Network, described in Chapter 3, covers the networking de-
mands of the proposed multi-blockchain infrastructure. This network com-
ponent may also be used in combination with the blockchain to create a wide
spectrum of applications and services, impossible using the blockchain alone
(cf. 2.9.13). These services, discussed in Chapter 4, include TON DNS, a
service for translating human-readable object identifiers into their addresses;
TON Storage, a distributed platform for storing arbitrary files; TON Proxy,
a service for anonymizing network access and accessing TON-powered ser-
vices; and TON Payments (cf. Chapter 5), a platform for instant off-chain
money transfers across the TON ecosystem that applications may use for
micropayments.

The TON infrastructure allows for specialized light client wallet and “ton-
browser” desktop and smartphone applications that enable a browser-like
experience for the end user (cf. 4.3.24), making cryptocurrency payments
and interaction with smart contracts and other services on the TON Platform
accessible to the mass user. Such a light client can be integrated into the
Telegram Messenger client (cf. 4.3.19), thus eventually bringing a wealth of
blockchain-based applications to hundreds of millions of users.

124

References

References
[1] K. Birman, Reliable Distributed Systems: Technologies, Web Services

and Applications, Springer, 2005.

[2] V. Buterin, Ethereum: A next-generation smart contract and de-
centralized application platform, https://github.com/ethereum/wiki/
wiki/White-Paper, 2013.

[3] M. Ben-Or, B. Kelmer, T. Rabin, Asynchronous secure computa-
tions with optimal resilience, in Proceedings of the thirteenth annual ACM
symposium on Principles of distributed computing, p. 183–192. ACM,
1994.

[4] M. Castro, B. Liskov, et al., Practical byzantine fault tolerance,
Proceedings of the Third Symposium on Operating Systems Design and
Implementation (1999), p. 173–186, available at http://pmg.csail.mit.
edu/papers/osdi99.pdf.

[5] EOS.IO, EOS.IO technical white paper, https://github.com/EOSIO/
Documentation/blob/master/TechnicalWhitePaper.md, 2017.

[6] D. Goldschlag, M. Reed, P. Syverson, Onion Routing for Anony-
mous and Private Internet Connections, Communications of the ACM,
42, num. 2 (1999), http://www.onion-router.net/Publications/
CACM-1999.pdf.

[7] L. Lamport, R. Shostak, M. Pease, The byzantine generals problem,
ACM Transactions on Programming Languages and Systems, 4/3 (1982),
p. 382–401.

[8] S. Larimer, The history of BitShares, https://docs.bitshares.org/
bitshares/history.html, 2013.

[9] M. Luby, A. Shokrollahi, et al., RaptorQ forward error correction
scheme for object delivery, IETF RFC 6330, https://tools.ietf.org/
html/rfc6330, 2011.

[10] P. Maymounkov, D. Mazières, Kademlia: A peer-to-peer infor-
mation system based on the XOR metric, in IPTPS ’01 revised pa-
pers from the First International Workshop on Peer-to-Peer Systems,

125

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://pmg.csail.mit.edu/papers/osdi99.pdf
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
http://www.onion-router.net/Publications/CACM-1999.pdf
http://www.onion-router.net/Publications/CACM-1999.pdf
https://docs.bitshares.org/bitshares/history.html
https://docs.bitshares.org/bitshares/history.html
https://tools.ietf.org/html/rfc6330
https://tools.ietf.org/html/rfc6330

References

p. 53–65, available at http://pdos.csail.mit.edu/~petar/papers/
maymounkov-kademlia-lncs.pdf, 2002.

[11] A. Miller, Yu Xia, et al., The honey badger of BFT protocols,
Cryptology e-print archive 2016/99, https://eprint.iacr.org/2016/
199.pdf, 2016.

[12] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, https:
//bitcoin.org/bitcoin.pdf, 2008.

[13] S. Peyton Jones, Implementing lazy functional languages on stock
hardware: the Spineless Tagless G-machine, Journal of Functional Pro-
gramming 2 (2), p. 127–202, 1992.

[14] A. Shokrollahi, M. Luby, Raptor Codes, IEEE Transactions on
Information Theory 6, no. 3–4 (2006), p. 212–322.

[15] M. van Steen, A. Tanenbaum, Distributed Systems, 3rd ed., 2017.

[16] The Univalent Foundations Program, Homotopy Type Theory:
Univalent Foundations of Mathematics, Institute for Advanced Study,
2013, available at https://homotopytypetheory.org/book.

[17] G. Wood, PolkaDot: vision for a heterogeneous multi-chain frame-
work, draft 1, https://github.com/w3f/polkadot-white-paper/raw/
master/PolkaDotPaper.pdf, 2016.

126

http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://eprint.iacr.org/2016/199.pdf
https://eprint.iacr.org/2016/199.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://homotopytypetheory.org/book
https://github.com/w3f/polkadot-white-paper/raw/master/PolkaDotPaper.pdf
https://github.com/w3f/polkadot-white-paper/raw/master/PolkaDotPaper.pdf

Appendix A. The TON Coin, or the Gram

A The TON Coin, or the Gram
The principal cryptocurrency of the TON Blockchain, and in particular of
its masterchain and basic workchain, is the TON Coin, also known as the
Gram (GRM). It is used to make deposits required to become a validator;
transaction fees, gas payments (i.e., smart-contract message processing fees)
and persistent storage payments are also usually collected in Grams.

A.1. Subdivision and terminology. A Gram is subdivided into one billion
(109) smaller units, called nanograms, ngrams or simply nanos. All trans-
fers and account balances are expressed as non-negative integer multiples of
nanos. Other units include:

• A nano, ngram or nanogram is the smallest unit, equal to 10−9 Grams.

• A micro or microgram equals one thousand (103) nanos.

• A milli is one million (106) nanos, or one thousandth part (10−3) of a
Gram.

• A Gram equals one billion (109) nanos.

• A kilogram, or kGram, equals one thousand (103) Grams.

• A megagram, orMGram, equals one million (106) Grams, or 1015 nanos.

• Finally, a gigagram, or GGram, equals one billion (109) Grams, or 1018

nanos.

There will be no need for larger units, because the initial supply of Grams
will be limited to five billion (5 · 109) Grams (i.e., 5 Gigagrams).

A.2. Smaller units for expressing gas prices. If the necessity for smaller
units arises, “specks” equal to 2−16 nanograms will be used. For example, gas
prices may be indicated in specks. However, the actual fee to be paid, com-
puted as the product of the gas price and the amount of gas consumed, will
be always rounded down to the nearest multiple of 216 specks and expressed
as an integer number of nanos.

127

Appendix A. The TON Coin, or the Gram

A.3. Original supply, mining rewards and inflation. The total supply
of Grams is originally limited to 5 Gigagrams (i.e., five billion Grams or
5 · 1018 nanos).

This supply will increase very slowly, as rewards to validators for mining
new masterchain and shardchain blocks accumulate. These rewards would
amount to approximately 20% (the exact number may be adjusted in future)
of the validator’s stake per year, provided the validator diligently performs
its duties, signs all blocks, never goes offline and never signs invalid blocks. In
this way, the validators will have enough profit to invest into better and faster
hardware needed to process the ever growing quantity of users’ transactions.

We expect that at most 10%36 of the total supply of Grams, on average,
will be bound in validator stakes at any given moment. This will produce an
inflation rate of 2% per year, and as a result, will double the total supply of
Grams (to ten Gigagrams) in 35 years. Essentially, this inflation represents a
payment made by all members of the community to the validators for keeping
the system up and running.

On the other hand, if a validator is caught misbehaving, a part or all of
its stake will be taken away as a punishment, and a larger portion of it will
subsequently be “burned”, decreasing the total supply of Grams. This would
lead to deflation. A smaller portion of the fine may be redistributed to the
validator or the “fisherman” who committed a proof of the guilty validator’s
misbehavior.

A.4. Original price of Grams. The price of the first Gram to be sold
will equal approximately $0.1 (USD). Every subsequent Gram to be sold (by
the TON Reserve, controlled by the TON Foundation) will be priced one
billionth higher than the previous one. In this way, the n-th Gram to be put
into circulation will be sold at approximately

p(n) ≈ 0.1 · (1 + 10−9)n USD, (26)

or an approximately equivalent (because of quickly changing market exchange
rates) amount of other (crypto)currencies, such as BTC or ETH.

A.4.1. Exponentially priced cryptocurrencies. We say that the Gram
is an exponentially priced cryptocurrency, meaning that the price of the n-th

36The maximum total amount of validator stakes is a configurable parameter of the
blockchain, so this restriction can be enforced by the protocol if necessary.

128

Appendix A. The TON Coin, or the Gram

Gram to be put into circulation is approximately p(n) given by the formula

p(n) = p0 · eαn (27)

with specific values p0 = 0.1 USD and α = 10−9.
More precisely, a small fraction dn of a new coin is worth p(n) dn dollars,

once n coins are put into circulation. (Here n is not necessarily an integer.)
Other important parameters of such a cryptocurrency include n, the total

number of coins in circulation, and N ≥ n, the total number of coins that
can exist. For the Gram, N = 5 · 109.

A.4.2. Total price of first n coins. The total price T (n) =
∫ n

0
p(n) dn ≈

p(0) + p(1) + · · · + p(n − 1) of the first n coins of an exponentially priced
cryptocurrency (e.g., the Gram) to be put into circulation can be computed
by

T (n) = p0 · α−1(eαn − 1) . (28)

A.4.3. Total price of next ∆n coins. The total price T (n+ ∆n)− T (n)
of ∆n coins put into circulation after n previously existing coins can be
computed by

T (n+ ∆n)−T (n) = p0 ·α−1(eα(n+∆n)− eαn) = p(n) ·α−1(eα∆n− 1) . (29)

A.4.4. Buying next coins with total value T . Suppose that n coins have
already been put into circulation, and that one wants to spend T (dollars) on
buying new coins. The quantity of newly-obtained coins ∆n can be computed
by putting T (n+ ∆n)− T (n) = T into (29), yielding

∆n = α−1 log

(
1 +

T · α
p(n)

)
. (30)

Of course, if T ≪ p(n)α−1, then ∆n ≈ T/p(n).

A.4.5. Market price of Grams. Of course, if the free market price falls
below p(n) := 0.1 ·(1+10−9)n, once n Grams are put into circulation, nobody
would buy new Grams from the TON Reserve; they would choose to buy their
Grams on the free market instead, without increasing the total quantity of
Grams in circulation. On the other hand, the market price of a Gram cannot
become much higher than p(n), otherwise it would make sense to obtain new
Grams from the TON Reserve. This means that the market price of Grams

129

Appendix A. The TON Coin, or the Gram

would not be subject to sudden spikes (and drops); this is important because
stakes (validator deposits) are frozen for at least one month, and gas prices
cannot change too fast either. So, the overall economic stability of the system
requires some mechanism that would prevent the exchange rate of the Gram
from changing too drastically, such as the one described above.

A.4.6. Buying back the Grams. If the market price of the Gram falls
below 0.5 · p(n), when there are a total of n Grams in circulation (i.e., not
kept on a special account controlled by the TON Reserve), the TON Reserve
reserves the right to buy some Grams back and decrease n, the total quantity
of Grams in circulation. This may be required to prevent sudden falls of the
Gram exchange rate.

A.4.7. Selling new Grams at a higher price. The TON Reserve will
sell only up to one half (i.e., 2.5 · 109 Grams) of the total supply of Grams
according to the price formula (26). It reserves the right not to sell any of
the remaining Grams at all, or to sell them at a higher price than p(n), but
never at a lower price (taking into account the uncertainty of quickly changing
exchange rates). The rationale here is that once at least half of all Grams
have been sold, the total value of the Gram market will be sufficiently high,
and it will be more difficult for outside forces to manipulate the exchange
rate than it may be at the very beginning of the Gram’s deployment.

A.5. Using unallocated Grams. The TON Reserve will use the bulk of
“unallocated” Grams (approximately 5 · 109 − n Grams)—i.e., those residing
in the special account of the TON Reserve and some other accounts explic-
itly linked to it—only as validator stakes (because the TON Foundation itself
will likely have to provide most of the validators during the first deployment
phase of the TON Blockchain), and for voting in the masterchain for or
against proposals concerning changes in the “configurable parameters” and
other protocol changes, in the way determined by the TON Foundation (i.e.,
its creators—the development team). This also means that the TON Foun-
dation will have a majority of votes during the first deployment phase of the
TON Blockchain, which may be useful if a lot of parameters end up needing
to be adjusted, or if the need arises for hard or soft forks. Later, when less
than half of all Grams remain under control of the TON Foundation, the
system will become more democratic. Hopefully it will have become more
mature by then, without the need to adjust parameters too frequently.

130

Appendix A. The TON Coin, or the Gram

A.5.1. Some unallocated Grams will be given to developers. A pre-
defined (relatively small) quantity of “unallocated” Grams (e.g., 200 Mega-
grams, equal to 4% of the total supply) will be transferred during the de-
ployment of the TON Blockchain to a special account controlled by the TON
Foundation, and then some “rewards” may be paid from this account to the
developers of the open source TON software, with a minimum two-year vest-
ing period.

A.5.2. The TON Foundation needs Grams for operational purposes.
Recall that the TON Foundation will receive the fiat and cryptocurrency
obtained by selling Grams from the TON Reserve, and will use them for the
development and deployment of the TON Project. For instance, the original
set of validators, as well as an initial set of TON Storage and TON Proxy
nodes may be installed by the TON Foundation.

While this is necessary for the quick start of the project, the ultimate
goal is to make the project as decentralized as possible. To this end, the
TON Foundation may need to encourage installation of third-party validators
and TON Storage and TON Proxy nodes—for example, by paying them for
storing old blocks of the TON Blockchain or proxying network traffic of a
selected subset of services. Such payments will be made in Grams; therefore,
the TON Foundation will need a significant amount of Grams for operational
purposes.

A.5.3. Taking a pre-arranged amount from the Reserve. The TON
Foundation will transfer to its account a small part of the TON Reserve—
say, 10% of all coins (i.e. 500 Megagrams) after the end of the initial sale
of Grams—to be used for its own purposes as outlined in A.5.2. This is
best done simultaneously with the transfer of the funds intended for TON
developers, as mentioned in A.5.1.

After the transfers to the TON Foundation and the TON developers,
the TON Reserve price p(n) of the Gram will immediately rise by a certain
amount, known in advance. For example, if 10% of all coins are transferred
for the purposes of the TON Foundation, and 4% are transferred for the
encouragement of the developers, then the total quantity n of coins in circu-
lation will immediately increase by ∆n = 7 · 108, with the price of the Gram
multiplying by eα∆n = e0.7 ≈ 2 (i.e, doubling).

The remainding “unallocated” Grams will be used by the TON Reserve
as explained above in A.5. If the TON Foundation needs any more Grams

131

Appendix A. The TON Coin, or the Gram

thereafter, it will simply convert into Grams some of the funds it had previ-
ously obtained during the sale of the coins, either on the free market or by
buying Grams from the TON Reserve. To prevent excessive centralization,
the TON Foundation will never endeavour to have more than 10% of the
total amount of Grams (i.e., 500 Megagrams) on its account.

A.6. Bulk sales of Grams. When a lot of people simultaneously want
to buy large amounts of Grams from the TON Reserve, it makes sense not
to process their orders immediately, because this would lead to results very
dependent on the timing of specific orders and their processing sequence.

Instead, orders for buying Grams may be collected during some pre-
defined period of time (e.g., a day or a month) and then processed all together
at once. If k orders with i-th order worth Ti dollars arrive, then the total
amount T = T1 + T2 + · · · + Tk is used to buy ∆n new coins according to
(30), and the sender of the i-th order is allotted ∆n · Ti/T of these coins. In
this way, all buyers obtain their Grams at the same average price of T/∆n
USD per Gram.

After that, a new round of collecting orders for buying new Grams begins.
When the total value of Gram buying orders becomes low enough, this

system of “bulk sales” may be replaced with a system of immediate sales of
Grams from the TON Reserve according to formula (30).

The “bulk sales” mechanism will probably be used extensively during the
initial phase of collecting investments in the TON Project.

132

